Commit 8831c688 authored by thomwolf's avatar thomwolf
Browse files

fixing various parts of model conversion, loading and weights sharing

parent bcd4aa8f
...@@ -42,7 +42,7 @@ parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model ...@@ -42,7 +42,7 @@ parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model
# parser.add_argument('--data', type=str, default='../data/wikitext-103', # parser.add_argument('--data', type=str, default='../data/wikitext-103',
# help='location of the data corpus') # help='location of the data corpus')
parser.add_argument('--model_name', type=str, default='transfo-xl-wt103', parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
choices=['transfo-xl-wt103'], #, 'lm1b', 'enwik8', 'text8'], # choices=['transfo-xl-wt103'], #, 'lm1b', 'enwik8', 'text8'],
help='pretrained model name') help='pretrained model name')
parser.add_argument('--split', type=str, default='test', parser.add_argument('--split', type=str, default='test',
choices=['all', 'valid', 'test'], choices=['all', 'valid', 'test'],
......
...@@ -116,7 +116,8 @@ def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path, ...@@ -116,7 +116,8 @@ def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path,
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
pytorch_vocab_dump_path = pytorch_dump_folder_path + '/' + VOCAB_NAME pytorch_vocab_dump_path = pytorch_dump_folder_path + '/' + VOCAB_NAME
print("Save vocabulary to {}".format(pytorch_vocab_dump_path)) print("Save vocabulary to {}".format(pytorch_vocab_dump_path))
torch.save(corpus.vocab.__dict__, pytorch_vocab_dump_path) corpus_vocab_dict = corpus.vocab.__dict__
torch.save(corpus_vocab_dict, pytorch_vocab_dump_path)
corpus_dict_no_vocab = corpus.__dict__ corpus_dict_no_vocab = corpus.__dict__
corpus_dict_no_vocab.pop('vocab', None) corpus_dict_no_vocab.pop('vocab', None)
...@@ -139,7 +140,7 @@ def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path, ...@@ -139,7 +140,7 @@ def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path,
model = TransfoXLModel(config) model = TransfoXLModel(config)
# Build TF to PyTorch weights loading map # Build TF to PyTorch weights loading map
tf_to_pt_map = build_tf_to_pytorch_map(model.transformer, config) tf_to_pt_map = build_tf_to_pytorch_map(model, config)
# Load weights from TF model # Load weights from TF model
init_vars = tf.train.list_variables(tf_path) init_vars = tf.train.list_variables(tf_path)
......
...@@ -30,6 +30,7 @@ import collections ...@@ -30,6 +30,7 @@ import collections
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter from torch.nn.parameter import Parameter
...@@ -40,7 +41,10 @@ from .file_utils import cached_path ...@@ -40,7 +41,10 @@ from .file_utils import cached_path
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = { PRETRAINED_MODEL_ARCHIVE_MAP = {
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103.tar.gz", 'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-transfo_xl_config.json",
} }
CONFIG_NAME = 'transfo_xl_config.json' CONFIG_NAME = 'transfo_xl_config.json'
WEIGHTS_NAME = 'pytorch_model.bin' WEIGHTS_NAME = 'pytorch_model.bin'
...@@ -674,99 +678,266 @@ class AdaptiveEmbedding(nn.Module): ...@@ -674,99 +678,266 @@ class AdaptiveEmbedding(nn.Module):
return embed return embed
class MemTransformerLM(nn.Module):
def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
dropout, dropatt, tie_weight=True, d_embed=None,
div_val=1, tie_projs=[False], pre_lnorm=False,
tgt_len=None, ext_len=None, mem_len=None,
cutoffs=[], adapt_inp=False, untie_r=False,
same_length=False, attn_type=0, clamp_len=-1,
sample_softmax=-1, **kwargs):
super(MemTransformerLM, self).__init__()
self.n_token = n_token
d_embed = d_model if d_embed is None else d_embed class TransfoXLPreTrainedModel(nn.Module):
self.d_embed = d_embed """ An abstract class to handle weights initialization and
self.d_model = d_model a simple interface for dowloading and loading pretrained models.
self.n_head = n_head """
self.d_head = d_head def __init__(self, config, *inputs, **kwargs):
super(TransfoXLPreTrainedModel, self).__init__()
if not isinstance(config, TransfoXLConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `TransfoXLConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs, def init_weight(self, weight):
div_val=div_val) if self.config.init == 'uniform':
nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
elif self.config.init == 'normal':
nn.init.normal_(weight, 0.0, self.config.init_std)
self.drop = nn.Dropout(dropout) def init_bias(self, bias):
nn.init.constant_(bias, 0.0)
def init_weights(self, m):
""" Initialize the weights.
"""
classname = m.__class__.__name__
if classname.find('Linear') != -1:
if hasattr(m, 'weight') and m.weight is not None:
self.init_weight(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
self.init_bias(m.bias)
elif classname.find('AdaptiveEmbedding') != -1:
if hasattr(m, 'emb_projs'):
for i in range(len(m.emb_projs)):
if m.emb_projs[i] is not None:
nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
elif classname.find('Embedding') != -1:
if hasattr(m, 'weight'):
self.init_weight(m.weight)
elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
self.init_weight(m.cluster_weight)
if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
self.init_bias(m.cluster_bias)
if hasattr(m, 'out_projs'):
for i in range(len(m.out_projs)):
if m.out_projs[i] is not None:
nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
elif classname.find('LayerNorm') != -1:
if hasattr(m, 'weight'):
nn.init.normal_(m.weight, 1.0, self.config.init_std)
if hasattr(m, 'bias') and m.bias is not None:
self.init_bias(m.bias)
elif classname.find('TransformerLM') != -1:
if hasattr(m, 'r_emb'):
self.init_weight(m.r_emb)
if hasattr(m, 'r_w_bias'):
self.init_weight(m.r_w_bias)
if hasattr(m, 'r_r_bias'):
self.init_weight(m.r_r_bias)
if hasattr(m, 'r_bias'):
self.init_bias(m.r_bias)
self.n_layer = n_layer def set_num_special_tokens(self, num_special_tokens):
pass
self.tgt_len = tgt_len @classmethod
self.mem_len = mem_len def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None,
self.ext_len = ext_len *inputs, **kwargs):
self.max_klen = tgt_len + ext_len + mem_len """
Instantiate a TransfoXLPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `transfo-xl`
- a path or url to a pretrained model archive containing:
. `transfo_xl_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
else:
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find files {} and {} "
"at this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
pretrained_model_name_or_path,
archive_file, config_file))
return None
if resolved_archive_file == archive_file and resolved_config_file == config_file:
logger.info("loading weights file {}".format(archive_file))
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading weights file {} from cache at {}".format(
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = TransfoXLConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None:
state_dict = torch.load(resolved_archive_file)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
# load(model.transformer if hasattr(model, 'transformer') else model, prefix='')
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
return model
class TransfoXLModel(TransfoXLPreTrainedModel):
def __init__(self, config):
# n_token, n_layer, n_head, d_model, d_head, d_inner,
# dropout, dropatt, tie_weight=True, d_embed=None,
# div_val=1, tie_projs=[False], pre_lnorm=False,
# tgt_len=None, ext_len=None, mem_len=None,
# cutoffs=[], adapt_inp=False, untie_r=False,
# same_length=False, attn_type=0, clamp_len=-1,
# sample_softmax=-1, **kwargs):
super(TransfoXLModel, self).__init__(config)
self.n_token = config.n_token
self.d_embed = config.d_embed
self.d_model = config.d_model
self.n_head = config.n_head
self.d_head = config.d_head
self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs,
div_val=config.div_val)
self.attn_type = attn_type self.drop = nn.Dropout(config.dropout)
if not untie_r: self.n_layer = config.n_layer
self.tgt_len = config.tgt_len
self.mem_len = config.mem_len
self.ext_len = config.ext_len
self.max_klen = config.tgt_len + config.ext_len + config.mem_len
self.attn_type = config.attn_type
if not config.untie_r:
self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head)) self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
self.layers = nn.ModuleList() self.layers = nn.ModuleList()
if attn_type == 0: # the default attention if config.attn_type == 0: # the default attention
for i in range(n_layer): for i in range(config.n_layer):
self.layers.append( self.layers.append(
RelPartialLearnableDecoderLayer( RelPartialLearnableDecoderLayer(
n_head, d_model, d_head, d_inner, dropout, config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len, tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
dropatt=dropatt, pre_lnorm=pre_lnorm, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
r_w_bias=None if untie_r else self.r_w_bias, r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if untie_r else self.r_r_bias) r_r_bias=None if config.untie_r else self.r_r_bias)
) )
elif attn_type == 1: # learnable embeddings elif config.attn_type == 1: # learnable embeddings
for i in range(n_layer): for i in range(config.n_layer):
self.layers.append( self.layers.append(
RelLearnableDecoderLayer( RelLearnableDecoderLayer(
n_head, d_model, d_head, d_inner, dropout, config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len, tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
dropatt=dropatt, pre_lnorm=pre_lnorm, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
r_w_bias=None if untie_r else self.r_w_bias, r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if untie_r else self.r_r_bias) r_r_bias=None if config.untie_r else self.r_r_bias)
) )
elif attn_type in [2, 3]: # absolute embeddings elif config.attn_type in [2, 3]: # absolute embeddings
for i in range(n_layer): for i in range(config.n_layer):
self.layers.append( self.layers.append(
DecoderLayer( DecoderLayer(
n_head, d_model, d_head, d_inner, dropout, config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
dropatt=dropatt, pre_lnorm=pre_lnorm, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
r_w_bias=None if untie_r else self.r_w_bias, r_w_bias=None if config.untie_r else self.r_w_bias,
r_r_bias=None if untie_r else self.r_r_bias) r_r_bias=None if config.untie_r else self.r_r_bias)
) )
self.sample_softmax = sample_softmax self.sample_softmax = config.sample_softmax
# use sampled softmax # use sampled softmax
if sample_softmax > 0: if config.sample_softmax > 0:
self.out_layer = nn.Linear(d_model, n_token) self.out_layer = nn.Linear(config.d_model, config.n_token)
if tie_weight: if config.tie_weight:
self.out_layer.weight = self.word_emb.weight self.out_layer.weight = self.word_emb.weight
self.tie_weight = tie_weight self.tie_weight = config.tie_weight
self.sampler = LogUniformSampler(n_token, sample_softmax) self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
# use adaptive softmax (including standard softmax) # use adaptive softmax (including standard softmax)
else: else:
self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model, self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model,
cutoffs, div_val=div_val) config.cutoffs, div_val=config.div_val)
if tie_weight: if config.tie_weight:
for i in range(len(self.crit.out_layers)): for i in range(len(self.crit.out_layers)):
self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight
if tie_projs: if config.tie_projs:
for i, tie_proj in enumerate(tie_projs): for i, tie_proj in enumerate(config.tie_projs):
if tie_proj and div_val == 1 and d_model != d_embed: if tie_proj and config.div_val == 1 and config.d_model != config.d_embed:
self.crit.out_projs[i] = self.word_emb.emb_projs[0] self.crit.out_projs[i] = self.word_emb.emb_projs[0]
elif tie_proj and div_val != 1: elif tie_proj and config.div_val != 1:
self.crit.out_projs[i] = self.word_emb.emb_projs[i] self.crit.out_projs[i] = self.word_emb.emb_projs[i]
self.same_length = same_length self.same_length = config.same_length
self.clamp_len = clamp_len self.clamp_len = config.clamp_len
if self.attn_type == 0: # default attention if self.attn_type == 0: # default attention
self.pos_emb = PositionalEmbedding(self.d_model) self.pos_emb = PositionalEmbedding(self.d_model)
...@@ -859,8 +1030,7 @@ class MemTransformerLM(nn.Module): ...@@ -859,8 +1030,7 @@ class MemTransformerLM(nn.Module):
hids.append(core_out) hids.append(core_out)
for i, layer in enumerate(self.layers): for i, layer in enumerate(self.layers):
mems_i = None if mems is None else mems[i] mems_i = None if mems is None else mems[i]
core_out = layer(core_out, pos_emb, self.r_w_bias, core_out = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask, mems=mems_i)
self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
hids.append(core_out) hids.append(core_out)
elif self.attn_type == 1: # learnable elif self.attn_type == 1: # learnable
core_out = self.drop(word_emb) core_out = self.drop(word_emb)
...@@ -949,220 +1119,3 @@ class MemTransformerLM(nn.Module): ...@@ -949,220 +1119,3 @@ class MemTransformerLM(nn.Module):
else: else:
return [loss] + new_mems return [loss] + new_mems
class TransfoXLPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(TransfoXLPreTrainedModel, self).__init__()
if not isinstance(config, TransfoXLConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `TransfoXLConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
def init_weight(self, weight):
if self.config.init == 'uniform':
nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
elif self.config.init == 'normal':
nn.init.normal_(weight, 0.0, self.config.init_std)
def init_bias(self, bias):
nn.init.constant_(bias, 0.0)
def init_weights(self, m):
""" Initialize the weights.
"""
classname = m.__class__.__name__
if classname.find('Linear') != -1:
if hasattr(m, 'weight') and m.weight is not None:
self.init_weight(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
self.init_bias(m.bias)
elif classname.find('AdaptiveEmbedding') != -1:
if hasattr(m, 'emb_projs'):
for i in range(len(m.emb_projs)):
if m.emb_projs[i] is not None:
nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
elif classname.find('Embedding') != -1:
if hasattr(m, 'weight'):
self.init_weight(m.weight)
elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
self.init_weight(m.cluster_weight)
if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
self.init_bias(m.cluster_bias)
if hasattr(m, 'out_projs'):
for i in range(len(m.out_projs)):
if m.out_projs[i] is not None:
nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
elif classname.find('LayerNorm') != -1:
if hasattr(m, 'weight'):
nn.init.normal_(m.weight, 1.0, self.config.init_std)
if hasattr(m, 'bias') and m.bias is not None:
self.init_bias(m.bias)
elif classname.find('TransformerLM') != -1:
if hasattr(m, 'r_emb'):
self.init_weight(m.r_emb)
if hasattr(m, 'r_w_bias'):
self.init_weight(m.r_w_bias)
if hasattr(m, 'r_r_bias'):
self.init_weight(m.r_r_bias)
if hasattr(m, 'r_bias'):
self.init_bias(m.r_bias)
def set_num_special_tokens(self, num_special_tokens):
pass
@classmethod
def from_pretrained(cls, pretrained_model_name, state_dict=None, cache_dir=None,
*inputs, **kwargs):
"""
Instantiate a TransfoXLPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `transfo-xl`
- a path or url to a pretrained model archive containing:
. `transfo_xl_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
else:
archive_file = pretrained_model_name
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name,
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
archive_file))
return None
if resolved_archive_file == archive_file:
logger.info("loading archive file {}".format(archive_file))
else:
logger.info("loading archive file {} from cache at {}".format(
archive_file, resolved_archive_file))
tempdir = None
if os.path.isdir(resolved_archive_file):
serialization_dir = resolved_archive_file
else:
# Extract archive to temp dir
tempdir = tempfile.mkdtemp()
logger.info("extracting archive file {} to temp dir {}".format(
resolved_archive_file, tempdir))
with tarfile.open(resolved_archive_file, 'r:gz') as archive:
archive.extractall(tempdir)
serialization_dir = tempdir
# Load config
config_file = os.path.join(serialization_dir, CONFIG_NAME)
config = TransfoXLConfig.from_json_file(config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None:
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(weights_path)
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
# load(model.transformer if hasattr(model, 'transformer') else model, prefix='')
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
return model
class TransfoXLModel(TransfoXLPreTrainedModel):
""" Transformer XL model
From "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
by Zihang Dai*, Zhilin Yang*, Yiming Yang, William W. Cohen, Jaime Carbonell,
Quoc V. Le, Ruslan Salakhutdinov (*: equal contribution)
Params:
config: a TransfoXLConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third embedding (the previous two being the word and position embeddings)
to each token in the sentence.
Outputs:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_transfo_xl.TransfoXLConfig()
model = modeling_transfo_xl.TransfoXLModel(config)
hidden_states = model(input_ids)
```
"""
def __init__(self, config):
super(TransfoXLModel, self).__init__(config)
self.transformer = MemTransformerLM(**config.to_dict())
self.apply(self.init_weights)
def forward(self, input_ids, position_ids=None, token_type_ids=None):
return self.transformer(input_ids, position_ids, token_type_ids)
...@@ -444,6 +444,12 @@ class TransfoXLCorpus(object): ...@@ -444,6 +444,12 @@ class TransfoXLCorpus(object):
for key, value in corpus_dict.items(): for key, value in corpus_dict.items():
corpus.__dict__[key] = value corpus.__dict__[key] = value
corpus.vocab = vocab corpus.vocab = vocab
if corpus.train is not None:
corpus.train = torch.tensor(corpus.train, dtype=torch.long)
if corpus.valid is not None:
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
if corpus.test is not None:
corpus.test = torch.tensor(corpus.test, dtype=torch.long)
return corpus return corpus
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment