Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
87c8fca9
"git@developer.sourcefind.cn:gaoqiong/autoawq_kernels.git" did not exist on "e87ebcd0b312e37165ca89f8fe59f29110bfd71d"
Commit
87c8fca9
authored
Dec 25, 2019
by
patrickvonplaten
Browse files
add example for ctrl text generation in docs
parent
88def24c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
0 deletions
+8
-0
src/transformers/modeling_utils.py
src/transformers/modeling_utils.py
+8
-0
No files found.
src/transformers/modeling_utils.py
View file @
87c8fca9
...
@@ -624,6 +624,14 @@ class PreTrainedModel(nn.Module):
...
@@ -624,6 +624,14 @@ class PreTrainedModel(nn.Module):
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
outputs = model.generate(input_ids=input_ids, max_length=40, do_sample=True, temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3) # generate sequences using beam search decoding (3 beams)
outputs = model.generate(input_ids=input_ids, max_length=40, do_sample=True, temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3) # generate sequences using beam search decoding (3 beams)
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer
model = AutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache.
input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences using using greedy search
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
"""
"""
# We cannot generate if the model does not have a LM head
# We cannot generate if the model does not have a LM head
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment