[mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) fine-tuned on [SQUAD v2.0 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/) for **Q&A** downstream task.
## Details of the downstream task (Q&A) - Model 🧠
**MobileBERT** is a thin version of *BERT_LARGE*, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
The checkpoint used here is the original MobileBert Optimized Uncased English: (uncased_L-24_H-128_B-512_A-4_F-4_OPT) checkpoint.
More about the model [here](https://arxiv.org/abs/2004.02984)
## Details of the downstream task (Q&A) - Dataset 📚
**SQuAD2.0** combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.
## Model training 🏋️
The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: