Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
8637316e
Unverified
Commit
8637316e
authored
Dec 29, 2022
by
ivanllt
Committed by
GitHub
Dec 29, 2022
Browse files
Remove Bert tokenizer dependency from DistillBert (slow/fast) tokenizers (#20933)
parent
fe65657d
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
614 additions
and
13 deletions
+614
-13
src/transformers/models/distilbert/tokenization_distilbert.py
...transformers/models/distilbert/tokenization_distilbert.py
+471
-7
src/transformers/models/distilbert/tokenization_distilbert_fast.py
...formers/models/distilbert/tokenization_distilbert_fast.py
+143
-6
No files found.
src/transformers/models/distilbert/tokenization_distilbert.py
View file @
8637316e
...
@@ -14,8 +14,13 @@
...
@@ -14,8 +14,13 @@
# limitations under the License.
# limitations under the License.
"""Tokenization classes for DistilBERT."""
"""Tokenization classes for DistilBERT."""
import
collections
import
os
import
unicodedata
from
typing
import
List
,
Optional
,
Tuple
from
...tokenization_utils
import
PreTrainedTokenizer
,
_is_control
,
_is_punctuation
,
_is_whitespace
from
...utils
import
logging
from
...utils
import
logging
from
..bert.tokenization_bert
import
BertTokenizer
logger
=
logging
.
get_logger
(
__name__
)
logger
=
logging
.
get_logger
(
__name__
)
...
@@ -59,18 +64,477 @@ PRETRAINED_INIT_CONFIGURATION = {
...
@@ -59,18 +64,477 @@ PRETRAINED_INIT_CONFIGURATION = {
}
}
class
DistilBertTokenizer
(
BertTokenizer
):
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def
load_vocab
(
vocab_file
):
"""Loads a vocabulary file into a dictionary."""
vocab
=
collections
.
OrderedDict
()
with
open
(
vocab_file
,
"r"
,
encoding
=
"utf-8"
)
as
reader
:
tokens
=
reader
.
readlines
()
for
index
,
token
in
enumerate
(
tokens
):
token
=
token
.
rstrip
(
"
\n
"
)
vocab
[
token
]
=
index
return
vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def
whitespace_tokenize
(
text
):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text
=
text
.
strip
()
if
not
text
:
return
[]
tokens
=
text
.
split
()
return
tokens
class
DistilBertTokenizer
(
PreTrainedTokenizer
):
r
"""
r
"""
Construct a DistilBERT tokenizer.
Construct a DistilBERT tokenizer.
Based on WordPiece.
[`DistilBertTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
and wordpiece
.
this superclass for more information regarding those methods
.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
"""
vocab_files_names
=
VOCAB_FILES_NAMES
vocab_files_names
=
VOCAB_FILES_NAMES
pretrained_vocab_files_map
=
PRETRAINED_VOCAB_FILES_MAP
pretrained_vocab_files_map
=
PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes
=
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration
=
PRETRAINED_INIT_CONFIGURATION
pretrained_init_configuration
=
PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes
=
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names
=
[
"input_ids"
,
"attention_mask"
]
model_input_names
=
[
"input_ids"
,
"attention_mask"
]
def
__init__
(
self
,
vocab_file
,
do_lower_case
=
True
,
do_basic_tokenize
=
True
,
never_split
=
None
,
unk_token
=
"[UNK]"
,
sep_token
=
"[SEP]"
,
pad_token
=
"[PAD]"
,
cls_token
=
"[CLS]"
,
mask_token
=
"[MASK]"
,
tokenize_chinese_chars
=
True
,
strip_accents
=
None
,
**
kwargs
):
super
().
__init__
(
do_lower_case
=
do_lower_case
,
do_basic_tokenize
=
do_basic_tokenize
,
never_split
=
never_split
,
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
cls_token
=
cls_token
,
mask_token
=
mask_token
,
tokenize_chinese_chars
=
tokenize_chinese_chars
,
strip_accents
=
strip_accents
,
**
kwargs
,
)
if
not
os
.
path
.
isfile
(
vocab_file
):
raise
ValueError
(
f
"Can't find a vocabulary file at path '
{
vocab_file
}
'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self
.
vocab
=
load_vocab
(
vocab_file
)
self
.
ids_to_tokens
=
collections
.
OrderedDict
([(
ids
,
tok
)
for
tok
,
ids
in
self
.
vocab
.
items
()])
self
.
do_basic_tokenize
=
do_basic_tokenize
if
do_basic_tokenize
:
self
.
basic_tokenizer
=
BasicTokenizer
(
do_lower_case
=
do_lower_case
,
never_split
=
never_split
,
tokenize_chinese_chars
=
tokenize_chinese_chars
,
strip_accents
=
strip_accents
,
)
self
.
wordpiece_tokenizer
=
WordpieceTokenizer
(
vocab
=
self
.
vocab
,
unk_token
=
self
.
unk_token
)
@
property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
def
do_lower_case
(
self
):
return
self
.
basic_tokenizer
.
do_lower_case
@
property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
def
vocab_size
(
self
):
return
len
(
self
.
vocab
)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
def
get_vocab
(
self
):
return
dict
(
self
.
vocab
,
**
self
.
added_tokens_encoder
)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
def
_tokenize
(
self
,
text
):
split_tokens
=
[]
if
self
.
do_basic_tokenize
:
for
token
in
self
.
basic_tokenizer
.
tokenize
(
text
,
never_split
=
self
.
all_special_tokens
):
# If the token is part of the never_split set
if
token
in
self
.
basic_tokenizer
.
never_split
:
split_tokens
.
append
(
token
)
else
:
split_tokens
+=
self
.
wordpiece_tokenizer
.
tokenize
(
token
)
else
:
split_tokens
=
self
.
wordpiece_tokenizer
.
tokenize
(
text
)
return
split_tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
def
_convert_token_to_id
(
self
,
token
):
"""Converts a token (str) in an id using the vocab."""
return
self
.
vocab
.
get
(
token
,
self
.
vocab
.
get
(
self
.
unk_token
))
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
def
_convert_id_to_token
(
self
,
index
):
"""Converts an index (integer) in a token (str) using the vocab."""
return
self
.
ids_to_tokens
.
get
(
index
,
self
.
unk_token
)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
def
convert_tokens_to_string
(
self
,
tokens
):
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
" "
.
join
(
tokens
).
replace
(
" ##"
,
""
).
strip
()
return
out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def
build_inputs_with_special_tokens
(
self
,
token_ids_0
:
List
[
int
],
token_ids_1
:
Optional
[
List
[
int
]]
=
None
)
->
List
[
int
]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if
token_ids_1
is
None
:
return
[
self
.
cls_token_id
]
+
token_ids_0
+
[
self
.
sep_token_id
]
cls
=
[
self
.
cls_token_id
]
sep
=
[
self
.
sep_token_id
]
return
cls
+
token_ids_0
+
sep
+
token_ids_1
+
sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def
get_special_tokens_mask
(
self
,
token_ids_0
:
List
[
int
],
token_ids_1
:
Optional
[
List
[
int
]]
=
None
,
already_has_special_tokens
:
bool
=
False
)
->
List
[
int
]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if
already_has_special_tokens
:
return
super
().
get_special_tokens_mask
(
token_ids_0
=
token_ids_0
,
token_ids_1
=
token_ids_1
,
already_has_special_tokens
=
True
)
if
token_ids_1
is
not
None
:
return
[
1
]
+
([
0
]
*
len
(
token_ids_0
))
+
[
1
]
+
([
0
]
*
len
(
token_ids_1
))
+
[
1
]
return
[
1
]
+
([
0
]
*
len
(
token_ids_0
))
+
[
1
]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def
create_token_type_ids_from_sequences
(
self
,
token_ids_0
:
List
[
int
],
token_ids_1
:
Optional
[
List
[
int
]]
=
None
)
->
List
[
int
]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep
=
[
self
.
sep_token_id
]
cls
=
[
self
.
cls_token_id
]
if
token_ids_1
is
None
:
return
len
(
cls
+
token_ids_0
+
sep
)
*
[
0
]
return
len
(
cls
+
token_ids_0
+
sep
)
*
[
0
]
+
len
(
token_ids_1
+
sep
)
*
[
1
]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
def
save_vocabulary
(
self
,
save_directory
:
str
,
filename_prefix
:
Optional
[
str
]
=
None
)
->
Tuple
[
str
]:
index
=
0
if
os
.
path
.
isdir
(
save_directory
):
vocab_file
=
os
.
path
.
join
(
save_directory
,
(
filename_prefix
+
"-"
if
filename_prefix
else
""
)
+
VOCAB_FILES_NAMES
[
"vocab_file"
]
)
else
:
vocab_file
=
(
filename_prefix
+
"-"
if
filename_prefix
else
""
)
+
save_directory
with
open
(
vocab_file
,
"w"
,
encoding
=
"utf-8"
)
as
writer
:
for
token
,
token_index
in
sorted
(
self
.
vocab
.
items
(),
key
=
lambda
kv
:
kv
[
1
]):
if
index
!=
token_index
:
logger
.
warning
(
f
"Saving vocabulary to
{
vocab_file
}
: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index
=
token_index
writer
.
write
(
token
+
"
\n
"
)
index
+=
1
return
(
vocab_file
,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class
BasicTokenizer
(
object
):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
def
__init__
(
self
,
do_lower_case
=
True
,
never_split
=
None
,
tokenize_chinese_chars
=
True
,
strip_accents
=
None
):
if
never_split
is
None
:
never_split
=
[]
self
.
do_lower_case
=
do_lower_case
self
.
never_split
=
set
(
never_split
)
self
.
tokenize_chinese_chars
=
tokenize_chinese_chars
self
.
strip_accents
=
strip_accents
def
tokenize
(
self
,
text
,
never_split
=
None
):
"""
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split
=
self
.
never_split
.
union
(
set
(
never_split
))
if
never_split
else
self
.
never_split
text
=
self
.
_clean_text
(
text
)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if
self
.
tokenize_chinese_chars
:
text
=
self
.
_tokenize_chinese_chars
(
text
)
orig_tokens
=
whitespace_tokenize
(
text
)
split_tokens
=
[]
for
token
in
orig_tokens
:
if
token
not
in
never_split
:
if
self
.
do_lower_case
:
token
=
token
.
lower
()
if
self
.
strip_accents
is
not
False
:
token
=
self
.
_run_strip_accents
(
token
)
elif
self
.
strip_accents
:
token
=
self
.
_run_strip_accents
(
token
)
split_tokens
.
extend
(
self
.
_run_split_on_punc
(
token
,
never_split
))
output_tokens
=
whitespace_tokenize
(
" "
.
join
(
split_tokens
))
return
output_tokens
def
_run_strip_accents
(
self
,
text
):
"""Strips accents from a piece of text."""
text
=
unicodedata
.
normalize
(
"NFD"
,
text
)
output
=
[]
for
char
in
text
:
cat
=
unicodedata
.
category
(
char
)
if
cat
==
"Mn"
:
continue
output
.
append
(
char
)
return
""
.
join
(
output
)
def
_run_split_on_punc
(
self
,
text
,
never_split
=
None
):
"""Splits punctuation on a piece of text."""
if
never_split
is
not
None
and
text
in
never_split
:
return
[
text
]
chars
=
list
(
text
)
i
=
0
start_new_word
=
True
output
=
[]
while
i
<
len
(
chars
):
char
=
chars
[
i
]
if
_is_punctuation
(
char
):
output
.
append
([
char
])
start_new_word
=
True
else
:
if
start_new_word
:
output
.
append
([])
start_new_word
=
False
output
[
-
1
].
append
(
char
)
i
+=
1
return
[
""
.
join
(
x
)
for
x
in
output
]
def
_tokenize_chinese_chars
(
self
,
text
):
"""Adds whitespace around any CJK character."""
output
=
[]
for
char
in
text
:
cp
=
ord
(
char
)
if
self
.
_is_chinese_char
(
cp
):
output
.
append
(
" "
)
output
.
append
(
char
)
output
.
append
(
" "
)
else
:
output
.
append
(
char
)
return
""
.
join
(
output
)
def
_is_chinese_char
(
self
,
cp
):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if
(
(
cp
>=
0x4E00
and
cp
<=
0x9FFF
)
or
(
cp
>=
0x3400
and
cp
<=
0x4DBF
)
#
or
(
cp
>=
0x20000
and
cp
<=
0x2A6DF
)
#
or
(
cp
>=
0x2A700
and
cp
<=
0x2B73F
)
#
or
(
cp
>=
0x2B740
and
cp
<=
0x2B81F
)
#
or
(
cp
>=
0x2B820
and
cp
<=
0x2CEAF
)
#
or
(
cp
>=
0xF900
and
cp
<=
0xFAFF
)
or
(
cp
>=
0x2F800
and
cp
<=
0x2FA1F
)
#
):
#
return
True
return
False
def
_clean_text
(
self
,
text
):
"""Performs invalid character removal and whitespace cleanup on text."""
output
=
[]
for
char
in
text
:
cp
=
ord
(
char
)
if
cp
==
0
or
cp
==
0xFFFD
or
_is_control
(
char
):
continue
if
_is_whitespace
(
char
):
output
.
append
(
" "
)
else
:
output
.
append
(
char
)
return
""
.
join
(
output
)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class
WordpieceTokenizer
(
object
):
"""Runs WordPiece tokenization."""
def
__init__
(
self
,
vocab
,
unk_token
,
max_input_chars_per_word
=
100
):
self
.
vocab
=
vocab
self
.
unk_token
=
unk_token
self
.
max_input_chars_per_word
=
max_input_chars_per_word
def
tokenize
(
self
,
text
):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens
=
[]
for
token
in
whitespace_tokenize
(
text
):
chars
=
list
(
token
)
if
len
(
chars
)
>
self
.
max_input_chars_per_word
:
output_tokens
.
append
(
self
.
unk_token
)
continue
is_bad
=
False
start
=
0
sub_tokens
=
[]
while
start
<
len
(
chars
):
end
=
len
(
chars
)
cur_substr
=
None
while
start
<
end
:
substr
=
""
.
join
(
chars
[
start
:
end
])
if
start
>
0
:
substr
=
"##"
+
substr
if
substr
in
self
.
vocab
:
cur_substr
=
substr
break
end
-=
1
if
cur_substr
is
None
:
is_bad
=
True
break
sub_tokens
.
append
(
cur_substr
)
start
=
end
if
is_bad
:
output_tokens
.
append
(
self
.
unk_token
)
else
:
output_tokens
.
extend
(
sub_tokens
)
return
output_tokens
src/transformers/models/distilbert/tokenization_distilbert_fast.py
View file @
8637316e
...
@@ -14,8 +14,13 @@
...
@@ -14,8 +14,13 @@
# limitations under the License.
# limitations under the License.
"""Tokenization classes for DistilBERT."""
"""Tokenization classes for DistilBERT."""
import
json
from
typing
import
List
,
Optional
,
Tuple
from
tokenizers
import
normalizers
from
...tokenization_utils_fast
import
PreTrainedTokenizerFast
from
...utils
import
logging
from
...utils
import
logging
from
..bert.tokenization_bert_fast
import
BertTokenizerFast
from
.tokenization_distilbert
import
DistilBertTokenizer
from
.tokenization_distilbert
import
DistilBertTokenizer
...
@@ -76,14 +81,44 @@ PRETRAINED_INIT_CONFIGURATION = {
...
@@ -76,14 +81,44 @@ PRETRAINED_INIT_CONFIGURATION = {
}
}
class
DistilBertTokenizerFast
(
Bert
TokenizerFast
):
class
DistilBertTokenizerFast
(
PreTrained
TokenizerFast
):
r
"""
r
"""
Construct a "fast" DistilBERT tokenizer (backed by HuggingFace's *tokenizers* library).
Construct a "fast" DistilBERT tokenizer (backed by HuggingFace's *tokenizers* library).
Based on WordPiece.
[`DistilBertTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
splitting and wordpiece
.
refer to this superclass for more information regarding those methods
.
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
"""
vocab_files_names
=
VOCAB_FILES_NAMES
vocab_files_names
=
VOCAB_FILES_NAMES
...
@@ -92,3 +127,105 @@ class DistilBertTokenizerFast(BertTokenizerFast):
...
@@ -92,3 +127,105 @@ class DistilBertTokenizerFast(BertTokenizerFast):
pretrained_init_configuration
=
PRETRAINED_INIT_CONFIGURATION
pretrained_init_configuration
=
PRETRAINED_INIT_CONFIGURATION
model_input_names
=
[
"input_ids"
,
"attention_mask"
]
model_input_names
=
[
"input_ids"
,
"attention_mask"
]
slow_tokenizer_class
=
DistilBertTokenizer
slow_tokenizer_class
=
DistilBertTokenizer
def
__init__
(
self
,
vocab_file
=
None
,
tokenizer_file
=
None
,
do_lower_case
=
True
,
unk_token
=
"[UNK]"
,
sep_token
=
"[SEP]"
,
pad_token
=
"[PAD]"
,
cls_token
=
"[CLS]"
,
mask_token
=
"[MASK]"
,
tokenize_chinese_chars
=
True
,
strip_accents
=
None
,
**
kwargs
):
super
().
__init__
(
vocab_file
,
tokenizer_file
=
tokenizer_file
,
do_lower_case
=
do_lower_case
,
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
cls_token
=
cls_token
,
mask_token
=
mask_token
,
tokenize_chinese_chars
=
tokenize_chinese_chars
,
strip_accents
=
strip_accents
,
**
kwargs
,
)
normalizer_state
=
json
.
loads
(
self
.
backend_tokenizer
.
normalizer
.
__getstate__
())
if
(
normalizer_state
.
get
(
"lowercase"
,
do_lower_case
)
!=
do_lower_case
or
normalizer_state
.
get
(
"strip_accents"
,
strip_accents
)
!=
strip_accents
or
normalizer_state
.
get
(
"handle_chinese_chars"
,
tokenize_chinese_chars
)
!=
tokenize_chinese_chars
):
normalizer_class
=
getattr
(
normalizers
,
normalizer_state
.
pop
(
"type"
))
normalizer_state
[
"lowercase"
]
=
do_lower_case
normalizer_state
[
"strip_accents"
]
=
strip_accents
normalizer_state
[
"handle_chinese_chars"
]
=
tokenize_chinese_chars
self
.
backend_tokenizer
.
normalizer
=
normalizer_class
(
**
normalizer_state
)
self
.
do_lower_case
=
do_lower_case
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens
def
build_inputs_with_special_tokens
(
self
,
token_ids_0
,
token_ids_1
=
None
):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output
=
[
self
.
cls_token_id
]
+
token_ids_0
+
[
self
.
sep_token_id
]
if
token_ids_1
:
output
+=
token_ids_1
+
[
self
.
sep_token_id
]
return
output
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences
def
create_token_type_ids_from_sequences
(
self
,
token_ids_0
:
List
[
int
],
token_ids_1
:
Optional
[
List
[
int
]]
=
None
)
->
List
[
int
]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep
=
[
self
.
sep_token_id
]
cls
=
[
self
.
cls_token_id
]
if
token_ids_1
is
None
:
return
len
(
cls
+
token_ids_0
+
sep
)
*
[
0
]
return
len
(
cls
+
token_ids_0
+
sep
)
*
[
0
]
+
len
(
token_ids_1
+
sep
)
*
[
1
]
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
def
save_vocabulary
(
self
,
save_directory
:
str
,
filename_prefix
:
Optional
[
str
]
=
None
)
->
Tuple
[
str
]:
files
=
self
.
_tokenizer
.
model
.
save
(
save_directory
,
name
=
filename_prefix
)
return
tuple
(
files
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment