Unverified Commit 859c4417 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #872 from huggingface/saving_schedules

Updating schedules for state_dict saving/loading
parents 268c6cc1 0740e63e
......@@ -36,14 +36,14 @@ class WarmupConstantSchedule(LambdaLR):
Keeps learning rate schedule equal to 1. after warmup_steps.
"""
def __init__(self, optimizer, warmup_steps, last_epoch=-1):
self.warmup_steps = warmup_steps
super(WarmupConstantSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(step):
if step < warmup_steps:
return float(step) / float(max(1.0, warmup_steps))
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
return 1.
super(WarmupConstantSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class WarmupLinearSchedule(LambdaLR):
""" Linear warmup and then linear decay.
......@@ -51,13 +51,14 @@ class WarmupLinearSchedule(LambdaLR):
Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps.
"""
def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
super(WarmupLinearSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(step):
if step < warmup_steps:
return float(step) / float(max(1, warmup_steps))
return max(0.0, float(t_total - step) / float(max(1.0, t_total - warmup_steps)))
super(WarmupLinearSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))
class WarmupCosineSchedule(LambdaLR):
......@@ -66,17 +67,19 @@ class WarmupCosineSchedule(LambdaLR):
Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
"""
warn_t_total = True
def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(step):
if step < warmup_steps:
return float(step) / float(max(1.0, warmup_steps))
else:
progress = float(step - warmup_steps) / float(max(1, t_total - warmup_steps)) # progress after warmup
return max(0.0, 0.5 * (1. + math.cos(math.pi * float(cycles) * 2.0 * progress)))
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
super(WarmupCosineSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class WarmupCosineWithHardRestartsSchedule(LambdaLR):
""" Linear warmup and then cosine cycles with hard restarts.
......@@ -85,17 +88,20 @@ class WarmupCosineWithHardRestartsSchedule(LambdaLR):
learning rate (with hard restarts).
"""
def __init__(self, optimizer, warmup_steps, t_total, cycles=1., last_epoch=-1):
def lr_lambda(step):
if step < warmup_steps:
return float(step) / float(max(1, warmup_steps))
else:
progress = float(step - warmup_steps) / float(max(1, t_total - warmup_steps)) # progress after warmup
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineWithHardRestartsSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1. + math.cos(math.pi * ((float(cycles) * progress) % 1.0))))
return max(0.0, 0.5 * (1. + math.cos(math.pi * ((float(self.cycles) * progress) % 1.0))))
super(WarmupCosineWithHardRestartsSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class AdamW(Optimizer):
......
......@@ -17,13 +17,14 @@ from __future__ import division
from __future__ import print_function
import unittest
import os
import torch
from pytorch_transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule,
WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule)
import numpy as np
from .tokenization_tests_commons import TemporaryDirectory
def unwrap_schedule(scheduler, num_steps=10):
......@@ -33,6 +34,20 @@ def unwrap_schedule(scheduler, num_steps=10):
lrs.append(scheduler.get_lr())
return lrs
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
lrs = []
for step in range(num_steps):
scheduler.step()
lrs.append(scheduler.get_lr())
if step == num_steps // 2:
with TemporaryDirectory() as tmpdirname:
file_name = os.path.join(tmpdirname, 'schedule.bin')
torch.save(scheduler.state_dict(), file_name)
state_dict = torch.load(file_name)
scheduler.load_state_dict(state_dict)
return lrs
class OptimizationTest(unittest.TestCase):
def assertListAlmostEqual(self, list1, list2, tol):
......@@ -72,6 +87,10 @@ class ScheduleInitTest(unittest.TestCase):
self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = ConstantLRSchedule(self.optimizer)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_constant_scheduler(self):
scheduler = WarmupConstantSchedule(self.optimizer, warmup_steps=4)
lrs = unwrap_schedule(scheduler, self.num_steps)
......@@ -79,6 +98,10 @@ class ScheduleInitTest(unittest.TestCase):
self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = WarmupConstantSchedule(self.optimizer, warmup_steps=4)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_linear_scheduler(self):
scheduler = WarmupLinearSchedule(self.optimizer, warmup_steps=2, t_total=10)
lrs = unwrap_schedule(scheduler, self.num_steps)
......@@ -86,6 +109,10 @@ class ScheduleInitTest(unittest.TestCase):
self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = WarmupLinearSchedule(self.optimizer, warmup_steps=2, t_total=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_cosine_scheduler(self):
scheduler = WarmupCosineSchedule(self.optimizer, warmup_steps=2, t_total=10)
lrs = unwrap_schedule(scheduler, self.num_steps)
......@@ -93,6 +120,10 @@ class ScheduleInitTest(unittest.TestCase):
self.assertEqual(len(lrs[0]), 1)
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
scheduler = WarmupCosineSchedule(self.optimizer, warmup_steps=2, t_total=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_cosine_hard_restart_scheduler(self):
scheduler = WarmupCosineWithHardRestartsSchedule(self.optimizer, warmup_steps=2, cycles=2, t_total=10)
lrs = unwrap_schedule(scheduler, self.num_steps)
......@@ -100,6 +131,9 @@ class ScheduleInitTest(unittest.TestCase):
self.assertEqual(len(lrs[0]), 1)
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
scheduler = WarmupCosineWithHardRestartsSchedule(self.optimizer, warmup_steps=2, cycles=2, t_total=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment