Unverified Commit 84c9cc6d authored by atturaioe's avatar atturaioe Committed by GitHub
Browse files

Add AnyPrecisionAdamW optimizer (#18961)

* Add AnyPrecisionAdamW optimizer

* Add optim_args argument to TrainingArgs

* Add tests for AnyPrecisionOptimizer

* Change AnyPrecisionAdam default params to float32

* Move default_anyprecision_kwargs in trainer test

* Rename AnyPrecisionAdamW
parent 37e01633
......@@ -29,6 +29,7 @@ import sys
import time
import warnings
from collections.abc import Mapping
from distutils.util import strtobool
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
......@@ -1081,7 +1082,16 @@ class Trainer:
The training arguments for the training session.
"""
# parse args.optim_args
optim_args = {}
if args.optim_args:
for mapping in args.optim_args.replace(" ", "").split(","):
key, value = mapping.split("=")
optim_args[key] = value
optimizer_kwargs = {"lr": args.learning_rate}
adam_kwargs = {
"betas": (args.adam_beta1, args.adam_beta2),
"eps": args.adam_epsilon,
......@@ -1123,6 +1133,26 @@ class Trainer:
optimizer_kwargs.update(adam_kwargs)
except ImportError:
raise ValueError("Trainer tried to instantiate bnb Adam8bit but bnb is not installed!")
elif args.optim == OptimizerNames.ADAMW_ANYPRECISION:
try:
from torchdistx.optimizers import AnyPrecisionAdamW
optimizer_cls = AnyPrecisionAdamW
optimizer_kwargs.update(adam_kwargs)
# TODO Change dtypes back to M=FP32, Var = BF16, Kahan = False once they can be cast together in torchdistx.
optimizer_kwargs.update(
{
"use_kahan_summation": strtobool(optim_args.get("use_kahan_summation", "False")),
"momentum_dtype": getattr(torch, optim_args.get("momentum_dtype", "float32")),
"variance_dtype": getattr(torch, optim_args.get("variance_dtype", "float32")),
"compensation_buffer_dtype": getattr(
torch, optim_args.get("compensation_buffer_dtype", "bfloat16")
),
}
)
except ImportError:
raise ValueError("Please install https://github.com/pytorch/torchdistx")
elif args.optim == OptimizerNames.SGD:
optimizer_cls = torch.optim.SGD
elif args.optim == OptimizerNames.ADAGRAD:
......
......@@ -113,6 +113,7 @@ class OptimizerNames(ExplicitEnum):
ADAMW_APEX_FUSED = "adamw_apex_fused"
ADAFACTOR = "adafactor"
ADAMW_BNB = "adamw_bnb_8bit"
ADAMW_ANYPRECISION = "adamw_anyprecision"
SGD = "sgd"
ADAGRAD = "adagrad"
......@@ -401,7 +402,9 @@ class TrainingArguments:
The options should be separated by whitespaces.
optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_hf"`):
The optimizer to use: adamw_hf, adamw_torch, adamw_apex_fused, or adafactor.
The optimizer to use: adamw_hf, adamw_torch, adamw_apex_fused, adamw_anyprecision or adafactor.
optim_args (`str`, *optional*):
Optional arguments that are supplied to AnyPrecisionAdamW.
adafactor (`bool`, *optional*, defaults to `False`):
This argument is deprecated. Use `--optim adafactor` instead.
group_by_length (`bool`, *optional*, defaults to `False`):
......@@ -857,6 +860,7 @@ class TrainingArguments:
default="adamw_hf",
metadata={"help": "The optimizer to use."},
)
optim_args: Optional[str] = field(default=None, metadata={"help": "Optional arguments to supply to optimizer."})
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
group_by_length: bool = field(
default=False,
......
......@@ -153,6 +153,7 @@ from .import_utils import (
is_torch_tf32_available,
is_torch_tpu_available,
is_torchaudio_available,
is_torchdistx_available,
is_torchdynamo_available,
is_training_run_on_sagemaker,
is_vision_available,
......
......@@ -508,6 +508,10 @@ def is_bitsandbytes_available():
return importlib.util.find_spec("bitsandbytes") is not None
def is_torchdistx_available():
return importlib.util.find_spec("torchdistx") is not None
def is_faiss_available():
return _faiss_available
......
......@@ -71,7 +71,13 @@ from transformers.testing_utils import (
)
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.training_args import OptimizerNames
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, is_apex_available, is_bitsandbytes_available
from transformers.utils import (
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
is_apex_available,
is_bitsandbytes_available,
is_torchdistx_available,
)
from transformers.utils.hp_naming import TrialShortNamer
......@@ -2287,24 +2293,31 @@ if is_torch_available():
"lr": TrainingArguments.learning_rate,
}
default_anyprecision_kwargs = {
"use_kahan_summation": False,
"momentum_dtype": torch.float32,
"variance_dtype": torch.float32,
"compensation_buffer_dtype": torch.bfloat16,
}
optim_test_params = [
(
OptimizerNames.ADAMW_HF,
TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
transformers.optimization.AdamW,
default_adam_kwargs,
),
(
OptimizerNames.ADAMW_HF.value,
TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
transformers.optimization.AdamW,
default_adam_kwargs,
),
(
OptimizerNames.ADAMW_TORCH,
TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
torch.optim.AdamW,
default_adam_kwargs,
),
(
OptimizerNames.ADAFACTOR,
TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
transformers.optimization.Adafactor,
{
"scale_parameter": False,
......@@ -2319,7 +2332,7 @@ if is_torch_available():
optim_test_params.append(
(
OptimizerNames.ADAMW_APEX_FUSED,
TrainingArguments(OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
apex.optimizers.FusedAdam,
default_adam_kwargs,
)
......@@ -2330,32 +2343,42 @@ if is_torch_available():
optim_test_params.append(
(
OptimizerNames.ADAMW_BNB,
TrainingArguments(optim=OptimizerNames.ADAMW_BNB, ouput_dir="None"),
bnb.optim.Adam8bit,
default_adam_kwargs,
)
)
if is_torchdistx_available():
import torchdistx
optim_test_params.append(
(
TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
torchdistx.optimizers.AnyPrecisionAdamW,
dict(default_adam_kwargs, **default_anyprecision_kwargs),
)
)
@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
def check_optim_and_kwargs(self, optim: OptimizerNames, mandatory_kwargs, expected_cls):
args = TrainingArguments(optim=optim, output_dir="None")
actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(args)
def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
self.assertEqual(expected_cls, actual_cls)
self.assertIsNotNone(optim_kwargs)
for p, v in mandatory_kwargs.items():
for p, v in expected_kwargs.items():
self.assertTrue(p in optim_kwargs)
actual_v = optim_kwargs[p]
self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")
@parameterized.expand(optim_test_params, skip_on_empty=True)
def test_optim_supported(self, name: str, expected_cls, mandatory_kwargs):
def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
# exercises all the valid --optim options
self.check_optim_and_kwargs(name, mandatory_kwargs, expected_cls)
self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
trainer = get_regression_trainer(optim=name)
trainer = get_regression_trainer(**training_args.to_dict())
trainer.train()
def test_fused_adam(self):
......@@ -2371,9 +2394,9 @@ class TrainerOptimizerChoiceTest(unittest.TestCase):
}
with patch.dict("sys.modules", modules):
self.check_optim_and_kwargs(
OptimizerNames.ADAMW_APEX_FUSED,
default_adam_kwargs,
TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
mock.optimizers.FusedAdam,
default_adam_kwargs,
)
def test_fused_adam_no_apex(self):
......@@ -2398,9 +2421,9 @@ class TrainerOptimizerChoiceTest(unittest.TestCase):
}
with patch.dict("sys.modules", modules):
self.check_optim_and_kwargs(
OptimizerNames.ADAMW_BNB,
default_adam_kwargs,
TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
mock.optim.Adam8bit,
default_adam_kwargs,
)
def test_bnb_adam8bit_no_bnb(self):
......@@ -2412,6 +2435,33 @@ class TrainerOptimizerChoiceTest(unittest.TestCase):
with self.assertRaises(ValueError):
Trainer.get_optimizer_cls_and_kwargs(args)
def test_anyprecision_adamw(self):
# Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
# Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
# class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
# the test to run without requiring a bnb installation.
mock = Mock()
modules = {
"torchdistx": mock,
"torchdistx.optimizers": mock.optimizers,
"torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
}
with patch.dict("sys.modules", modules):
self.check_optim_and_kwargs(
TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
mock.optimizers.AnyPrecisionAdamW,
dict(default_adam_kwargs, **default_anyprecision_kwargs),
)
def test_no_torchdistx_anyprecision_adamw(self):
args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")
# Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
# torchdistx.optimizers will fail even if torchdistx is installed.
with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
with self.assertRaises(ValueError):
Trainer.get_optimizer_cls_and_kwargs(args)
@require_torch
@require_wandb
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment