Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
83a41d39
Commit
83a41d39
authored
Jan 15, 2020
by
Julien Chaumond
Browse files
💄
super
parent
cd51893d
Changes
75
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
53 additions
and
53 deletions
+53
-53
src/transformers/modeling_utils.py
src/transformers/modeling_utils.py
+8
-8
src/transformers/modeling_xlm.py
src/transformers/modeling_xlm.py
+9
-9
src/transformers/modeling_xlnet.py
src/transformers/modeling_xlnet.py
+10
-10
src/transformers/optimization.py
src/transformers/optimization.py
+1
-1
src/transformers/optimization_tf.py
src/transformers/optimization_tf.py
+8
-8
src/transformers/tokenization_albert.py
src/transformers/tokenization_albert.py
+1
-1
src/transformers/tokenization_bert.py
src/transformers/tokenization_bert.py
+2
-2
src/transformers/tokenization_bert_japanese.py
src/transformers/tokenization_bert_japanese.py
+1
-1
src/transformers/tokenization_camembert.py
src/transformers/tokenization_camembert.py
+1
-1
src/transformers/tokenization_ctrl.py
src/transformers/tokenization_ctrl.py
+1
-1
src/transformers/tokenization_gpt2.py
src/transformers/tokenization_gpt2.py
+2
-2
src/transformers/tokenization_openai.py
src/transformers/tokenization_openai.py
+1
-1
src/transformers/tokenization_roberta.py
src/transformers/tokenization_roberta.py
+1
-1
src/transformers/tokenization_t5.py
src/transformers/tokenization_t5.py
+1
-1
src/transformers/tokenization_transfo_xl.py
src/transformers/tokenization_transfo_xl.py
+1
-1
src/transformers/tokenization_utils.py
src/transformers/tokenization_utils.py
+1
-1
src/transformers/tokenization_xlm.py
src/transformers/tokenization_xlm.py
+1
-1
src/transformers/tokenization_xlm_roberta.py
src/transformers/tokenization_xlm_roberta.py
+1
-1
src/transformers/tokenization_xlnet.py
src/transformers/tokenization_xlnet.py
+1
-1
templates/adding_a_new_model/configuration_xxx.py
templates/adding_a_new_model/configuration_xxx.py
+1
-1
No files found.
src/transformers/modeling_utils.py
View file @
83a41d39
...
...
@@ -47,7 +47,7 @@ except ImportError:
"""
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
Identity
,
self
).
__init__
()
super
().
__init__
()
def
forward
(
self
,
input
):
return
input
...
...
@@ -97,7 +97,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin):
return
{
"input_ids"
:
torch
.
tensor
(
DUMMY_INPUTS
)}
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
PreTrainedModel
,
self
).
__init__
()
super
().
__init__
()
if
not
isinstance
(
config
,
PretrainedConfig
):
raise
ValueError
(
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
...
...
@@ -1102,7 +1102,7 @@ class Conv1D(nn.Module):
""" Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2)
Basically works like a Linear layer but the weights are transposed
"""
super
(
Conv1D
,
self
).
__init__
()
super
().
__init__
()
self
.
nf
=
nf
w
=
torch
.
empty
(
nx
,
nf
)
nn
.
init
.
normal_
(
w
,
std
=
0.02
)
...
...
@@ -1120,7 +1120,7 @@ class PoolerStartLogits(nn.Module):
""" Compute SQuAD start_logits from sequence hidden states. """
def
__init__
(
self
,
config
):
super
(
PoolerStartLogits
,
self
).
__init__
()
super
().
__init__
()
self
.
dense
=
nn
.
Linear
(
config
.
hidden_size
,
1
)
def
forward
(
self
,
hidden_states
,
p_mask
=
None
):
...
...
@@ -1145,7 +1145,7 @@ class PoolerEndLogits(nn.Module):
"""
def
__init__
(
self
,
config
):
super
(
PoolerEndLogits
,
self
).
__init__
()
super
().
__init__
()
self
.
dense_0
=
nn
.
Linear
(
config
.
hidden_size
*
2
,
config
.
hidden_size
)
self
.
activation
=
nn
.
Tanh
()
self
.
LayerNorm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
config
.
layer_norm_eps
)
...
...
@@ -1191,7 +1191,7 @@ class PoolerAnswerClass(nn.Module):
""" Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """
def
__init__
(
self
,
config
):
super
(
PoolerAnswerClass
,
self
).
__init__
()
super
().
__init__
()
self
.
dense_0
=
nn
.
Linear
(
config
.
hidden_size
*
2
,
config
.
hidden_size
)
self
.
activation
=
nn
.
Tanh
()
self
.
dense_1
=
nn
.
Linear
(
config
.
hidden_size
,
1
,
bias
=
False
)
...
...
@@ -1276,7 +1276,7 @@ class SQuADHead(nn.Module):
"""
def
__init__
(
self
,
config
):
super
(
SQuADHead
,
self
).
__init__
()
super
().
__init__
()
self
.
start_n_top
=
config
.
start_n_top
self
.
end_n_top
=
config
.
end_n_top
...
...
@@ -1368,7 +1368,7 @@ class SequenceSummary(nn.Module):
"""
def
__init__
(
self
,
config
):
super
(
SequenceSummary
,
self
).
__init__
()
super
().
__init__
()
self
.
summary_type
=
config
.
summary_type
if
hasattr
(
config
,
"summary_type"
)
else
"last"
if
self
.
summary_type
==
"attn"
:
...
...
src/transformers/modeling_xlm.py
View file @
83a41d39
...
...
@@ -96,7 +96,7 @@ class MultiHeadAttention(nn.Module):
NEW_ID
=
itertools
.
count
()
def
__init__
(
self
,
n_heads
,
dim
,
config
):
super
(
MultiHeadAttention
,
self
).
__init__
()
super
().
__init__
()
self
.
layer_id
=
next
(
MultiHeadAttention
.
NEW_ID
)
self
.
output_attentions
=
config
.
output_attentions
self
.
dim
=
dim
...
...
@@ -197,7 +197,7 @@ class MultiHeadAttention(nn.Module):
class
TransformerFFN
(
nn
.
Module
):
def
__init__
(
self
,
in_dim
,
dim_hidden
,
out_dim
,
config
):
super
(
TransformerFFN
,
self
).
__init__
()
super
().
__init__
()
self
.
dropout
=
config
.
dropout
self
.
lin1
=
nn
.
Linear
(
in_dim
,
dim_hidden
)
self
.
lin2
=
nn
.
Linear
(
dim_hidden
,
out_dim
)
...
...
@@ -222,7 +222,7 @@ class XLMPreTrainedModel(PreTrainedModel):
base_model_prefix
=
"transformer"
def
__init__
(
self
,
*
inputs
,
**
kwargs
):
super
(
XLMPreTrainedModel
,
self
).
__init__
(
*
inputs
,
**
kwargs
)
super
().
__init__
(
*
inputs
,
**
kwargs
)
@
property
def
dummy_inputs
(
self
):
...
...
@@ -354,7 +354,7 @@ class XLMModel(XLMPreTrainedModel):
"""
def
__init__
(
self
,
config
):
# , dico, is_encoder, with_output):
super
(
XLMModel
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
output_attentions
=
config
.
output_attentions
self
.
output_hidden_states
=
config
.
output_hidden_states
...
...
@@ -585,7 +585,7 @@ class XLMPredLayer(nn.Module):
"""
def
__init__
(
self
,
config
):
super
(
XLMPredLayer
,
self
).
__init__
()
super
().
__init__
()
self
.
asm
=
config
.
asm
self
.
n_words
=
config
.
n_words
self
.
pad_index
=
config
.
pad_index
...
...
@@ -661,7 +661,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLMWithLMHeadModel
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
transformer
=
XLMModel
(
config
)
self
.
pred_layer
=
XLMPredLayer
(
config
)
...
...
@@ -754,7 +754,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLMForSequenceClassification
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
num_labels
=
config
.
num_labels
self
.
transformer
=
XLMModel
(
config
)
...
...
@@ -856,7 +856,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLMForQuestionAnsweringSimple
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
transformer
=
XLMModel
(
config
)
self
.
qa_outputs
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
num_labels
)
...
...
@@ -973,7 +973,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLMForQuestionAnswering
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
transformer
=
XLMModel
(
config
)
self
.
qa_outputs
=
SQuADHead
(
config
)
...
...
src/transformers/modeling_xlnet.py
View file @
83a41d39
...
...
@@ -204,7 +204,7 @@ XLNetLayerNorm = nn.LayerNorm
class
XLNetRelativeAttention
(
nn
.
Module
):
def
__init__
(
self
,
config
):
super
(
XLNetRelativeAttention
,
self
).
__init__
()
super
().
__init__
()
self
.
output_attentions
=
config
.
output_attentions
if
config
.
d_model
%
config
.
n_head
!=
0
:
...
...
@@ -414,7 +414,7 @@ class XLNetRelativeAttention(nn.Module):
class
XLNetFeedForward
(
nn
.
Module
):
def
__init__
(
self
,
config
):
super
(
XLNetFeedForward
,
self
).
__init__
()
super
().
__init__
()
self
.
layer_norm
=
XLNetLayerNorm
(
config
.
d_model
,
eps
=
config
.
layer_norm_eps
)
self
.
layer_1
=
nn
.
Linear
(
config
.
d_model
,
config
.
d_inner
)
self
.
layer_2
=
nn
.
Linear
(
config
.
d_inner
,
config
.
d_model
)
...
...
@@ -437,7 +437,7 @@ class XLNetFeedForward(nn.Module):
class
XLNetLayer
(
nn
.
Module
):
def
__init__
(
self
,
config
):
super
(
XLNetLayer
,
self
).
__init__
()
super
().
__init__
()
self
.
rel_attn
=
XLNetRelativeAttention
(
config
)
self
.
ff
=
XLNetFeedForward
(
config
)
self
.
dropout
=
nn
.
Dropout
(
config
.
dropout
)
...
...
@@ -631,7 +631,7 @@ class XLNetModel(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetModel
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
output_attentions
=
config
.
output_attentions
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
output_past
=
config
.
output_past
...
...
@@ -996,7 +996,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetLMHeadModel
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
attn_type
=
config
.
attn_type
self
.
same_length
=
config
.
same_length
...
...
@@ -1119,7 +1119,7 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetForSequenceClassification
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
num_labels
=
config
.
num_labels
self
.
transformer
=
XLNetModel
(
config
)
...
...
@@ -1234,7 +1234,7 @@ class XLNetForTokenClassification(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetForTokenClassification
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
num_labels
=
config
.
num_labels
self
.
transformer
=
XLNetModel
(
config
)
...
...
@@ -1355,7 +1355,7 @@ class XLNetForMultipleChoice(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetForMultipleChoice
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
transformer
=
XLNetModel
(
config
)
self
.
sequence_summary
=
SequenceSummary
(
config
)
...
...
@@ -1463,7 +1463,7 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetForQuestionAnsweringSimple
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
num_labels
=
config
.
num_labels
self
.
transformer
=
XLNetModel
(
config
)
...
...
@@ -1595,7 +1595,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
XLNetForQuestionAnswering
,
self
).
__init__
(
config
)
super
().
__init__
(
config
)
self
.
start_n_top
=
config
.
start_n_top
self
.
end_n_top
=
config
.
end_n_top
...
...
src/transformers/optimization.py
View file @
83a41d39
...
...
@@ -114,7 +114,7 @@ class AdamW(Optimizer):
if
not
0.0
<=
eps
:
raise
ValueError
(
"Invalid epsilon value: {} - should be >= 0.0"
.
format
(
eps
))
defaults
=
dict
(
lr
=
lr
,
betas
=
betas
,
eps
=
eps
,
weight_decay
=
weight_decay
,
correct_bias
=
correct_bias
)
super
(
AdamW
,
self
).
__init__
(
params
,
defaults
)
super
().
__init__
(
params
,
defaults
)
def
step
(
self
,
closure
=
None
):
"""Performs a single optimization step.
...
...
src/transformers/optimization_tf.py
View file @
83a41d39
...
...
@@ -24,7 +24,7 @@ class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Applys a warmup schedule on a given learning rate decay schedule."""
def
__init__
(
self
,
initial_learning_rate
,
decay_schedule_fn
,
warmup_steps
,
power
=
1.0
,
name
=
None
):
super
(
WarmUp
,
self
).
__init__
()
super
().
__init__
()
self
.
initial_learning_rate
=
initial_learning_rate
self
.
warmup_steps
=
warmup_steps
self
.
power
=
power
...
...
@@ -102,7 +102,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
name
=
"AdamWeightDecay"
,
**
kwargs
):
super
(
AdamWeightDecay
,
self
).
__init__
(
learning_rate
,
beta_1
,
beta_2
,
epsilon
,
amsgrad
,
name
,
**
kwargs
)
super
().
__init__
(
learning_rate
,
beta_1
,
beta_2
,
epsilon
,
amsgrad
,
name
,
**
kwargs
)
self
.
weight_decay_rate
=
weight_decay_rate
self
.
_include_in_weight_decay
=
include_in_weight_decay
self
.
_exclude_from_weight_decay
=
exclude_from_weight_decay
...
...
@@ -111,10 +111,10 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
def
from_config
(
cls
,
config
):
"""Creates an optimizer from its config with WarmUp custom object."""
custom_objects
=
{
"WarmUp"
:
WarmUp
}
return
super
(
AdamWeightDecay
,
cls
).
from_config
(
config
,
custom_objects
=
custom_objects
)
return
super
().
from_config
(
config
,
custom_objects
=
custom_objects
)
def
_prepare_local
(
self
,
var_device
,
var_dtype
,
apply_state
):
super
(
AdamWeightDecay
,
self
).
_prepare_local
(
var_device
,
var_dtype
,
apply_state
)
super
().
_prepare_local
(
var_device
,
var_dtype
,
apply_state
)
apply_state
[
"weight_decay_rate"
]
=
tf
.
constant
(
self
.
weight_decay_rate
,
name
=
"adam_weight_decay_rate"
)
def
_decay_weights_op
(
self
,
var
,
learning_rate
,
apply_state
):
...
...
@@ -128,7 +128,7 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
def
apply_gradients
(
self
,
grads_and_vars
,
clip_norm
,
name
=
None
):
grads
,
tvars
=
list
(
zip
(
*
grads_and_vars
))
(
grads
,
_
)
=
tf
.
clip_by_global_norm
(
grads
,
clip_norm
=
clip_norm
)
return
super
(
AdamWeightDecay
,
self
).
apply_gradients
(
zip
(
grads
,
tvars
))
return
super
().
apply_gradients
(
zip
(
grads
,
tvars
))
def
_get_lr
(
self
,
var_device
,
var_dtype
,
apply_state
):
"""Retrieves the learning rate with the given state."""
...
...
@@ -147,16 +147,16 @@ class AdamWeightDecay(tf.keras.optimizers.Adam):
lr_t
,
kwargs
=
self
.
_get_lr
(
var
.
device
,
var
.
dtype
.
base_dtype
,
apply_state
)
decay
=
self
.
_decay_weights_op
(
var
,
lr_t
,
apply_state
)
with
tf
.
control_dependencies
([
decay
]):
return
super
(
AdamWeightDecay
,
self
).
_resource_apply_dense
(
grad
,
var
,
**
kwargs
)
return
super
().
_resource_apply_dense
(
grad
,
var
,
**
kwargs
)
def
_resource_apply_sparse
(
self
,
grad
,
var
,
indices
,
apply_state
=
None
):
lr_t
,
kwargs
=
self
.
_get_lr
(
var
.
device
,
var
.
dtype
.
base_dtype
,
apply_state
)
decay
=
self
.
_decay_weights_op
(
var
,
lr_t
,
apply_state
)
with
tf
.
control_dependencies
([
decay
]):
return
super
(
AdamWeightDecay
,
self
).
_resource_apply_sparse
(
grad
,
var
,
indices
,
**
kwargs
)
return
super
().
_resource_apply_sparse
(
grad
,
var
,
indices
,
**
kwargs
)
def
get_config
(
self
):
config
=
super
(
AdamWeightDecay
,
self
).
get_config
()
config
=
super
().
get_config
()
config
.
update
({
"weight_decay_rate"
:
self
.
weight_decay_rate
})
return
config
...
...
src/transformers/tokenization_albert.py
View file @
83a41d39
...
...
@@ -79,7 +79,7 @@ class AlbertTokenizer(PreTrainedTokenizer):
mask_token
=
"[MASK]"
,
**
kwargs
):
super
(
AlbertTokenizer
,
self
).
__init__
(
super
().
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
...
...
src/transformers/tokenization_bert.py
View file @
83a41d39
...
...
@@ -163,7 +163,7 @@ class BertTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese:
see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
"""
super
(
BertTokenizer
,
self
).
__init__
(
super
().
__init__
(
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
...
...
@@ -554,7 +554,7 @@ class BertTokenizerFast(PreTrainedTokenizerFast):
add_special_tokens
=
True
,
**
kwargs
):
super
(
BertTokenizerFast
,
self
).
__init__
(
super
().
__init__
(
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
...
...
src/transformers/tokenization_bert_japanese.py
View file @
83a41d39
...
...
@@ -107,7 +107,7 @@ class BertJapaneseTokenizer(BertTokenizer):
**subword_tokenizer_type**: (`optional`) string (default "wordpiece")
Type of subword tokenizer.
"""
super
(
BertTokenizer
,
self
).
__init__
(
super
().
__init__
(
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
...
...
src/transformers/tokenization_camembert.py
View file @
83a41d39
...
...
@@ -66,7 +66,7 @@ class CamembertTokenizer(PreTrainedTokenizer):
additional_special_tokens
=
[
"<s>NOTUSED"
,
"</s>NOTUSED"
],
**
kwargs
):
super
(
CamembertTokenizer
,
self
).
__init__
(
super
().
__init__
(
max_len
=
512
,
bos_token
=
bos_token
,
eos_token
=
eos_token
,
...
...
src/transformers/tokenization_ctrl.py
View file @
83a41d39
...
...
@@ -126,7 +126,7 @@ class CTRLTokenizer(PreTrainedTokenizer):
control_codes
=
CONTROL_CODES
def
__init__
(
self
,
vocab_file
,
merges_file
,
unk_token
=
"<unk>"
,
**
kwargs
):
super
(
CTRLTokenizer
,
self
).
__init__
(
unk_token
=
unk_token
,
**
kwargs
)
super
().
__init__
(
unk_token
=
unk_token
,
**
kwargs
)
self
.
max_len_single_sentence
=
(
self
.
max_len
)
# no default special tokens - you can update this value if you add special tokens
...
...
src/transformers/tokenization_gpt2.py
View file @
83a41d39
...
...
@@ -122,7 +122,7 @@ class GPT2Tokenizer(PreTrainedTokenizer):
eos_token
=
"<|endoftext|>"
,
**
kwargs
):
super
(
GPT2Tokenizer
,
self
).
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
**
kwargs
)
super
().
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
**
kwargs
)
self
.
max_len_single_sentence
=
(
self
.
max_len
)
# no default special tokens - you can update this value if you add special tokens
...
...
@@ -268,7 +268,7 @@ class GPT2TokenizerFast(PreTrainedTokenizerFast):
truncation_strategy
=
"longest_first"
,
**
kwargs
):
super
(
GPT2TokenizerFast
,
self
).
__init__
(
super
().
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
**
kwargs
)
...
...
src/transformers/tokenization_openai.py
View file @
83a41d39
...
...
@@ -82,7 +82,7 @@ class OpenAIGPTTokenizer(PreTrainedTokenizer):
max_model_input_sizes
=
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def
__init__
(
self
,
vocab_file
,
merges_file
,
unk_token
=
"<unk>"
,
**
kwargs
):
super
(
OpenAIGPTTokenizer
,
self
).
__init__
(
unk_token
=
unk_token
,
**
kwargs
)
super
().
__init__
(
unk_token
=
unk_token
,
**
kwargs
)
self
.
max_len_single_sentence
=
(
self
.
max_len
...
...
src/transformers/tokenization_roberta.py
View file @
83a41d39
...
...
@@ -84,7 +84,7 @@ class RobertaTokenizer(GPT2Tokenizer):
mask_token
=
"<mask>"
,
**
kwargs
):
super
(
RobertaTokenizer
,
self
).
__init__
(
super
().
__init__
(
vocab_file
=
vocab_file
,
merges_file
=
merges_file
,
errors
=
errors
,
...
...
src/transformers/tokenization_t5.py
View file @
83a41d39
...
...
@@ -91,7 +91,7 @@ class T5Tokenizer(PreTrainedTokenizer):
additional_special_tokens
=
[]
additional_special_tokens
.
extend
([
"<extra_id_{}>"
.
format
(
i
)
for
i
in
range
(
extra_ids
)])
super
(
T5Tokenizer
,
self
).
__init__
(
super
().
__init__
(
eos_token
=
eos_token
,
unk_token
=
unk_token
,
pad_token
=
pad_token
,
...
...
src/transformers/tokenization_transfo_xl.py
View file @
83a41d39
...
...
@@ -78,7 +78,7 @@ class TransfoXLTokenizer(PreTrainedTokenizer):
additional_special_tokens
=
[
"<formula>"
],
**
kwargs
):
super
(
TransfoXLTokenizer
,
self
).
__init__
(
super
().
__init__
(
unk_token
=
unk_token
,
eos_token
=
eos_token
,
additional_special_tokens
=
additional_special_tokens
,
**
kwargs
)
...
...
src/transformers/tokenization_utils.py
View file @
83a41d39
...
...
@@ -1425,7 +1425,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizer):
_decoder
=
None
def
__init__
(
self
,
**
kwargs
):
super
(
PreTrainedTokenizerFast
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
@
property
def
tokenizer
(
self
):
...
...
src/transformers/tokenization_xlm.py
View file @
83a41d39
...
...
@@ -578,7 +578,7 @@ class XLMTokenizer(PreTrainedTokenizer):
do_lowercase_and_remove_accent
=
True
,
**
kwargs
):
super
(
XLMTokenizer
,
self
).
__init__
(
super
().
__init__
(
unk_token
=
unk_token
,
bos_token
=
bos_token
,
sep_token
=
sep_token
,
...
...
src/transformers/tokenization_xlm_roberta.py
View file @
83a41d39
...
...
@@ -75,7 +75,7 @@ class XLMRobertaTokenizer(PreTrainedTokenizer):
mask_token
=
"<mask>"
,
**
kwargs
):
super
(
XLMRobertaTokenizer
,
self
).
__init__
(
super
().
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
...
...
src/transformers/tokenization_xlnet.py
View file @
83a41d39
...
...
@@ -77,7 +77,7 @@ class XLNetTokenizer(PreTrainedTokenizer):
additional_special_tokens
=
[
"<eop>"
,
"<eod>"
],
**
kwargs
):
super
(
XLNetTokenizer
,
self
).
__init__
(
super
().
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
...
...
templates/adding_a_new_model/configuration_xxx.py
View file @
83a41d39
...
...
@@ -80,7 +80,7 @@ class XxxConfig(PretrainedConfig):
summary_first_dropout
=
0.1
,
**
kwargs
):
super
(
XxxConfig
,
self
).
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
vocab_size
=
vocab_size
self
.
n_ctx
=
n_ctx
self
.
n_positions
=
n_positions
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment