"examples/bertology/run_bertology.py" did not exist on "7766ce66dd788a780a54f890711ad58cb3d96f5f"
Unverified Commit 82984215 authored by Sam Shleifer's avatar Sam Shleifer Committed by GitHub
Browse files

Add TFBartForConditionalGeneration (#5411)



* half done

* doc improvement

* Cp test file

* brokedn

* broken test

* undo some mess

* ckpt

* borked

* Halfway

* 6 passing

* boom boom

* Much progress but still 6

* boom boom

* merged master

* 10 passing

* boom boom

* Style

* no t5 changes

* 13 passing

* Integration test failing, but not gibberish

* Frustrated

* Merged master

* 4 fail

* 4 fail

* fix return_dict

* boom boom

* Still only 4

* prepare method

* prepare method

* before delete classif

* Skip tests to avoid adding boilerplate

* boom boom

* fast tests passing

* style

* boom boom

* Switch to supporting many input types

* remove FIXMENORM

* working

* Fixed past_key_values/decoder_cached_states confusion

* new broken test

* Fix attention mask kwarg name

* undo accidental

* Style and reviewers

* style

* Docs and common tests

* Cleaner assert messages

* copy docs

* style issues

* Sphinx fix

* Simplify caching logic

* test does not require torch

* copy _NoLayerEmbedTokens

* Update src/transformers/modeling_tf_bart.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update tests/test_modeling_tf_bart.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/modeling_tf_bart.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/modeling_tf_bart.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/modeling_tf_bart.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Line length and dont document None

* Add pipeline test coverage

* assert msg

* At parity

* Assert messages

* mark slow

* Update compile test

* back in init

* Merge master

* Fix tests
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>
parent 5cd9e2cb
......@@ -86,3 +86,18 @@ BartForQuestionAnswering
.. autoclass:: transformers.BartForQuestionAnswering
:members: forward
TFBartModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBartModel
:members: call
TFBartForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFBartForConditionalGeneration
:members: call
......@@ -652,6 +652,7 @@ if is_tf_available():
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
)
from .modeling_tf_bart import TFBartForConditionalGeneration, TFBartModel
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
......
......@@ -20,6 +20,7 @@ import os
from transformers import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
......@@ -37,6 +38,7 @@ from transformers import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
......@@ -49,6 +51,7 @@ from transformers import (
RobertaConfig,
T5Config,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
......@@ -87,6 +90,7 @@ if is_torch_available():
from transformers import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
......@@ -113,6 +117,12 @@ if is_torch_available():
logging.set_verbosity_info()
MODEL_CLASSES = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
......
......@@ -640,6 +640,10 @@ class TFGenerationMixin:
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
if self.config.is_encoder_decoder and do_sample is False:
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
)
# calculate log softmax score
scores = tf.nn.log_softmax(next_token_logits, axis=-1) # (batch_size * num_beams, vocab_size)
......@@ -890,6 +894,13 @@ class TFGenerationMixin:
def _reorder_cache(past, beam_idx):
return tuple(tf.gather(layer_past, beam_idx, axis=1) for layer_past in past)
def adjust_logits_during_generation(self, logits, **kwargs):
"""
Implement in subclasses of :class:`~transfomers.PreTrainedModel` for custom behavior to adjust the logits in
the generate method.
"""
return logits
def _create_next_token_logits_penalties(input_ids, logits, repetition_penalty):
# create logit penalties for already seen input_ids
......
......@@ -131,7 +131,7 @@ BART_INPUTS_DOCSTRING = r"""
:obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`) is a
sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
the decoder.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
past_key_values (:obj:`Tuple[Dict[str: tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last
......@@ -217,12 +217,6 @@ def _make_linear_from_emb(emb):
return lin_layer
# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
if shape_1 != shape2:
raise AssertionError("shape mismatch: {} != {}".format(shape_1, shape2))
def shift_tokens_right(input_ids, pad_token_id):
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
prev_output_tokens = input_ids.clone()
......@@ -595,7 +589,7 @@ class BartDecoder(nn.Module):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = []
next_decoder_cache: List[Dict] = []
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
......@@ -640,7 +634,7 @@ class BartDecoder(nn.Module):
)
def _reorder_buffer(attn_cache, new_order):
def _reorder_buffer(attn_cache: Dict, new_order) -> Dict:
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = input_buffer_k.index_select(0, new_order)
......@@ -679,17 +673,15 @@ class Attention(nn.Module):
def forward(
self,
query,
key: Optional[Tensor],
key: Tensor,
key_padding_mask: Optional[Tensor] = None,
layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
layer_state: Optional[Dict[str, Tensor]] = None,
attn_mask: Optional[Tensor] = None,
output_attentions=False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel"""
static_kv: bool = self.encoder_decoder_attention
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
# get here for encoder decoder cause of static_kv
if layer_state is not None: # reuse k,v and encoder_padding_mask
saved_state = layer_state.get(self.cache_key, {})
......@@ -697,17 +689,16 @@ class Attention(nn.Module):
# previous time steps are cached - no need to recompute key and value if they are static
key = None
else:
# this branch is hit by encoder
saved_state = None
layer_state = {}
q = self.q_proj(query) * self.scaling
if static_kv:
if key is None:
if static_kv and key is None: # cross-attention with cache
k = v = None
else:
elif static_kv and key is not None: # cross-attention no prev_key found in cache
k = self.k_proj(key)
v = self.v_proj(key)
else:
else: # self-attention
k = self.k_proj(query)
v = self.v_proj(query)
......@@ -717,18 +708,16 @@ class Attention(nn.Module):
if v is not None:
v = self._shape(v, -1, bsz)
if saved_state is not None:
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)
if saved_state:
k, v = self._concat_saved_state(k, v, saved_state, static_kv, bsz)
# Update cache
layer_state[self.cache_key] = {
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
"prev_key_padding_mask": key_padding_mask if not static_kv else None,
}
if isinstance(layer_state, dict):
cached_shape = (bsz, self.num_heads, -1, self.head_dim) # bsz must be first for reorder_cache
layer_state[self.cache_key] = dict(prev_key=k.view(*cached_shape), prev_value=v.view(*cached_shape))
assert k is not None
src_len = k.size(1)
assert key_padding_mask is None or key_padding_mask.shape == (bsz, src_len)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)
......@@ -736,13 +725,7 @@ class Attention(nn.Module):
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
assert key_padding_mask is None or key_padding_mask.size()[:2] == (
bsz,
src_len,
)
# Note: deleted workaround to get around fork/join parallelism not supporting Optional types. on 2020/10/15
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
......@@ -750,11 +733,7 @@ class Attention(nn.Module):
attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_probs = F.dropout(
attn_weights,
p=self.dropout,
training=self.training,
)
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
assert v is not None
attn_output = torch.bmm(attn_probs, v)
......@@ -767,36 +746,13 @@ class Attention(nn.Module):
attn_weights = None
return attn_output, attn_weights
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
def _concat_saved_state(self, k, v, saved_state, static_kv, bsz) -> Tuple[Tensor]:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
assert k is not None and v is not None
prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
if prev_key_padding_mask is not None:
if static_kv:
new_key_padding_mask = prev_key_padding_mask
else:
new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
else:
new_key_padding_mask = key_padding_mask
return k, v, new_key_padding_mask
prev_K = saved_state["prev_key"].view(bsz * self.num_heads, -1, self.head_dim)
prev_V = saved_state["prev_value"].view(bsz * self.num_heads, -1, self.head_dim)
new_K = prev_K if static_kv else torch.cat([prev_K, k], dim=1)
new_V = prev_V if static_kv else torch.cat([prev_V, v], dim=1)
return new_K, new_V
class BartClassificationHead(nn.Module):
......@@ -1143,14 +1099,15 @@ class BartForConditionalGeneration(PretrainedBartModel):
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
self._force_token_ids_generation(logits, self.config.bos_token_id)
self._force_token_id_to_be_generated(logits, self.config.bos_token_id)
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_ids_generation(logits, self.config.eos_token_id)
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
def _force_token_ids_generation(self, scores, token_id) -> None:
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
scores[:, [x for x in range(self.config.vocab_size) if x != token_id]] = -float("inf")
scores[:, [x for x in range(scores.shape[1]) if x != token_id]] = -float("inf")
@staticmethod
def _reorder_cache(past, beam_idx):
......
......@@ -52,5 +52,5 @@ class BlenderbotForConditionalGeneration(BartForConditionalGeneration):
def adjust_logits_during_generation(self, logits, cur_len, max_length):
logits[:, self.config.bos_token_id] = -torch.finfo(torch.float16).max # near infinity fp16
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_ids_generation(logits, self.config.eos_token_id)
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
......@@ -51,5 +51,5 @@ class MarianMTModel(BartForConditionalGeneration):
def adjust_logits_during_generation(self, logits, cur_len, max_length):
logits[:, self.config.pad_token_id] = float("-inf") # never predict pad token.
if cur_len == max_length - 1 and self.config.eos_token_id is not None:
self._force_token_ids_generation(logits, self.config.eos_token_id)
self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
......@@ -21,6 +21,7 @@ from collections import OrderedDict
from .configuration_auto import (
AlbertConfig,
AutoConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
......@@ -51,6 +52,7 @@ from .modeling_tf_albert import (
TFAlbertForTokenClassification,
TFAlbertModel,
)
from .modeling_tf_bart import TFBartForConditionalGeneration
from .modeling_tf_bert import (
TFBertForMaskedLM,
TFBertForMultipleChoice,
......@@ -206,6 +208,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
(T5Config, TFT5ForConditionalGeneration),
(DistilBertConfig, TFDistilBertForMaskedLM),
(AlbertConfig, TFAlbertForMaskedLM),
(BartConfig, TFBartForConditionalGeneration),
(CamembertConfig, TFCamembertForMaskedLM),
(XLMRobertaConfig, TFXLMRobertaForMaskedLM),
(LongformerConfig, TFLongformerForMaskedLM),
......@@ -256,7 +259,9 @@ TF_MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
]
)
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict([(T5Config, TFT5ForConditionalGeneration)])
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
[(T5Config, TFT5ForConditionalGeneration), (BartConfig, TFBartForConditionalGeneration)]
)
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
[
......
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF BART model, ported from the fairseq repo."""
import math
import random
import warnings
from typing import Dict, Optional, Tuple
import tensorflow as tf
from tensorflow import Tensor
from tensorflow.keras.layers import Dense, LayerNormalization
from .activations_tf import ACT2FN
from .configuration_bart import BartConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable, replace_return_docstrings
from .modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPast, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput
# Public API
from .modeling_tf_utils import (
DUMMY_INPUTS,
TFPreTrainedModel,
TFSharedEmbeddings,
cast_bool_to_primitive,
keras_serializable,
shape_list,
)
from .tokenization_utils_base import BatchEncoding
from .utils import logging
_CONFIG_FOR_DOC = "BartConfig"
_TOKENIZER_FOR_DOC = "BartTokenizer"
BART_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass.
Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general
usage and behavior.
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having
all the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors
in the first positional argument :
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Args:
config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the model weights.
"""
BART_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`.
See :meth:`transformers.PreTrainedTokenizer.encode` and
:meth:`transformers.PreTrainedTokenizer.__call__` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids right, following the paper.
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (:obj:`Tuple[Dict[str: tf.Tensor]]` of length :obj:`config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.TFModelOutput` instead of a plain tuple.
training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
LARGE_NEGATIVE = -1e8
logger = logging.get_logger(__name__)
class _NoLayerEmbedTokens:
"""
this class wraps a the TFSharedEmbeddingTokens layer into a python 'no-keras-layer'
class to avoid problem with weight restoring. Also it makes sure that the layer is
called from the correct scope to avoid problem with saving/storing the correct weights
"""
def __init__(self, layer, abs_scope_name=None):
self._layer = layer
self._abs_scope_name = abs_scope_name
def call(self, inputs, mode="embedding"):
if self._abs_scope_name is None:
return self._layer.call(inputs, mode)
# if an abs scope name is given to the embedding variable, call variable from absolute scope
with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
with tf.name_scope(abs_scope_name.original_name_scope):
return self._layer.call(inputs, mode)
def __call__(self, inputs, mode="embedding"):
if self._abs_scope_name is None:
return self._layer(inputs, mode)
# if an abs scope name is given to the embedding variable, call variable from absolute scope
with tf.compat.v1.variable_scope(self._abs_scope_name, auxiliary_name_scope=False) as abs_scope_name:
with tf.name_scope(abs_scope_name.original_name_scope):
return self._layer(inputs, mode)
def create_position_ids_from_input_ids(input_ids, padding_idx):
"""Replace non-padding symbols with their position numbers. Position numbers begin at
padding_idx+1. Padding symbols are ignored. This is modified from fairseq's
`utils.make_positions`.
"""
mask = input_ids.ne(padding_idx).int()
incremental_indices = tf.cumsum(mask, axis=1).type_as(mask) * mask
return incremental_indices.long() + padding_idx
def causal_attention_mask(nd, ns, dtype):
"""1's in the lower triangle, counting from the lower right corner.
Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
"""
i = tf.range(nd)[:, None]
j = tf.range(ns)
m = i < j - ns + nd
return tf.cast(m, dtype) * LARGE_NEGATIVE
def invert_mask(attention_mask: tf.Tensor):
"""Turns 1->0, 0->1, False->True, True-> False"""
tf.debugging.assert_rank(attention_mask, 2)
attention_mask = tf.cast(attention_mask, tf.bool)
ret = tf.math.logical_not(attention_mask) # dtype is tf.bool
return ret
class TFPretrainedBartModel(TFPreTrainedModel):
config_class = BartConfig
base_model_prefix = "model"
@property
def dummy_inputs(self):
pad_token = 1
input_ids = tf.cast(tf.constant(DUMMY_INPUTS), tf.int32)
decoder_input_ids = tf.cast(tf.constant(DUMMY_INPUTS), tf.int32)
dummy_inputs = {
"decoder_input_ids": decoder_input_ids,
"attention_mask": tf.math.not_equal(input_ids, pad_token),
"input_ids": input_ids,
}
return dummy_inputs
def _shift_right(self, input_ids):
# Should maybe be decoder_start_token_id. Change for torch and TF in one PR
position_0_id = self.config.eos_token_id
pad_token_id = self.config.pad_token_id
shifted_input_ids = tf.cast(input_ids, tf.int32)
shifted_input_ids = tf.roll(shifted_input_ids, 1, axis=-1)
start_tokens = tf.fill((shape_list(shifted_input_ids)[0], 1), position_0_id)
shifted_input_ids = tf.concat([start_tokens, shifted_input_ids[:, 1:]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, tf.int32))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Helper Functions, mostly for making masks
def make_padding_mask(input_ids, padding_idx=1):
"""True for pad tokens"""
padding_mask = tf.math.equal(input_ids, padding_idx) # bool tensor
return padding_mask
# Helper Modules
PAST_KV_DEPRECATION_WARNING = (
"The `past_key_value_states` argument is deprecated and will be removed in a future "
"version, use `past_key_values` instead."
)
class TFEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: BartConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout_wt = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = Dense(self.embed_dim, name="fc2")
self.final_layer_norm = LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.normalize_before = config.normalize_before
def call(self, x, encoder_padding_mask, training=False):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
for t_tgt, t_src is excluded (or masked out), =0 means it is
included in attention
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
x, self_attn_weights = self.self_attn(query=x, key=x, key_padding_mask=encoder_padding_mask)
assert x.shape == residual.shape, f"Self attn modified the shape of query {residual.shape} to {x.shape}"
x = self.dropout_wt(x, training=training)
x = residual + x
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout(x, training=training)
x = self.fc2(x)
x = self.dropout_wt(x, training=training)
x = residual + x
if not self.normalize_before:
x = self.final_layer_norm(x)
return x, self_attn_weights
class TFBartEncoder(tf.keras.layers.Layer):
# config_class = BartConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer
is a :class:`TFEncoderLayer`.
Args:
config: BartConfig
"""
def __init__(self, config: BartConfig, embed_tokens: TFSharedEmbeddings, **kwargs):
super().__init__(**kwargs)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
embed_dim = embed_tokens.vocab_size
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_tokens = embed_tokens
self.embed_positions = TFLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_tokens.hidden_size,
self.padding_idx,
config.extra_pos_embeddings,
name="embed_positions",
)
self.layers = [TFEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.layer_norm = (
tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
if config.add_final_layer_norm
else None
)
self.return_dict = config.return_dict
def call(
self,
input_ids=None,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=None,
training=False,
):
"""
Args:
input_ids (Tensor): tokens in the source language of shape
`(batch, src_len)`
attention_mask (Tensor): indicating which indices are padding tokens.
Returns:
namedtuple:
- **x** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
- **all_attentions** (List[Tensor]): Attention weights for each layer.
During training might not be of length n_layers because of layer dropout.
"""
output_attentions = output_attentions if output_attentions is not None else self.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states
return_dict = return_dict if return_dict is not None else self.return_dict
# check attention mask and invert
if attention_mask is not None:
assert (
attention_mask._rank() == 2
), f"expected attention_mask._rank() to be a 2D tensor got {attention_mask._rank()}"
attention_mask = tf.cast(attention_mask, dtype=tf.float32)
attention_mask = (1.0 - attention_mask) * LARGE_NEGATIVE
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_ids)
x = inputs_embeds + embed_pos
x = self.layernorm_embedding(x)
x = tf.nn.dropout(x, rate=self.dropout if training else 0)
# B x T x C -> T x B x C
x = tf.transpose(x, perm=[1, 0, 2])
encoder_states = [] if output_hidden_states else None
all_attentions = () if output_attentions else None
# encoder layers
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states.append(x)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
x, attn = encoder_layer(x, attention_mask)
if output_attentions:
all_attentions += (attn,)
if self.layer_norm:
x = self.layer_norm(x)
if output_hidden_states:
encoder_states.append(x)
encoder_states = [tf.transpose(hidden_state, perm=(1, 0, 2)) for hidden_state in encoder_states]
x = tf.transpose(x, perm=(1, 0, 2))
if not return_dict:
return tuple(v for v in [x, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions)
class TFDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: BartConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
encoder_decoder_attention=True,
name="encoder_attn",
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
x,
encoder_hidden_states: tf.Tensor,
encoder_attn_mask=None,
layer_state=None,
causal_mask=None,
decoder_padding_mask=None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Dict[str, tf.Tensor]]:
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attn_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
Tuple containing, encoded output of shape `(seq_len, batch, embed_dim)`, self_attn_weights, layer_state
"""
if layer_state is None:
layer_state = {}
residual = x # Make a copy of the input tensor to add later.
# next line mutates layer state and we need a copy of it
x, self_attn_weights = self.self_attn(
query=x,
key=x,
layer_state=layer_state,
attn_mask=causal_mask,
key_padding_mask=decoder_padding_mask,
)
x = tf.nn.dropout(x, rate=self.dropout if training else 0)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
# Cross-Attention
x, _ = self.encoder_attn(
query=x,
key=encoder_hidden_states,
key_padding_mask=encoder_attn_mask,
layer_state=layer_state, # mutates layer state
)
x = tf.nn.dropout(x, rate=self.dropout if training else 0)
x = residual + x
x = self.encoder_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = tf.nn.dropout(x, rate=self.activation_dropout if training else 0)
x = self.fc2(x)
x = tf.nn.dropout(x, rate=self.dropout if training else 0)
x = residual + x
x = self.final_layer_norm(x)
return (
x,
self_attn_weights,
layer_state,
) # just self_attn weights for now, following t5, layer_state = cache for decoding
class TFBartDecoder(tf.keras.layers.Layer):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer
is a :class:`TFDecoderLayer`.
Args:
config: BartConfig
embed_tokens: output embedding
"""
def __init__(self, config: BartConfig, embed_tokens, **kwargs):
super().__init__(**kwargs)
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_positions = TFLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
config.extra_pos_embeddings,
name="embed_positions",
)
self.layers = [TFDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layernorm_embedding = (
tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
if config.normalize_embedding
else tf.identity
)
self.layer_norm = (
tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
if config.add_final_layer_norm
else None
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.use_cache = config.use_cache
self.do_blenderbot_90_layernorm = config.do_blenderbot_90_layernorm
def call(
self,
input_ids,
encoder_hidden_states,
encoder_padding_mask,
decoder_padding_mask,
decoder_causal_mask,
decoder_cached_states=None,
use_cache=False,
output_attentions=False,
output_hidden_states=False,
return_dict=None,
training=False,
):
output_attentions = output_attentions if output_attentions is not None else self.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states
use_cache = use_cache if use_cache is not None else self.use_cache
return_dict = return_dict if return_dict is not None else self.config.return_dict
if use_cache:
assert not training, "Training + use cache are incompatible"
# check attention mask and invert
use_cache = cast_bool_to_primitive(use_cache)
if encoder_padding_mask is not None:
encoder_padding_mask = invert_mask(encoder_padding_mask)
# embed positions
positions = self.embed_positions(input_ids, use_cache=use_cache)
if use_cache:
input_ids = input_ids[:, -1:]
positions = positions[:, -1:]
x = self.embed_tokens(input_ids) * self.embed_scale
if self.do_blenderbot_90_layernorm:
x = self.layernorm_embedding(x) + positions
else:
x = self.layernorm_embedding(x + positions)
x = self.dropout(x)
# Convert to Bart output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
x = tf.transpose(x, perm=(1, 0, 2))
assert len(encoder_hidden_states.shape) == 3, "encoder_hidden_states must be a 3D tensor"
encoder_hidden_states = tf.transpose(encoder_hidden_states, perm=(1, 0, 2))
# decoder layers
all_hidden_states = ()
all_self_attns = ()
next_decoder_cache = []
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (x,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
layer_state = decoder_cached_states[idx] if decoder_cached_states is not None else None
x, layer_self_attn, layer_past = decoder_layer(
x,
encoder_hidden_states,
encoder_attn_mask=encoder_padding_mask,
decoder_padding_mask=decoder_padding_mask,
layer_state=layer_state,
causal_mask=decoder_causal_mask,
)
if use_cache:
next_decoder_cache.append(layer_past.copy())
if output_attentions:
all_self_attns += (layer_self_attn,)
if self.layer_norm is not None: # same as if config.add_final_layer_norm
x = self.layer_norm(x)
# Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
if output_hidden_states:
all_hidden_states += (x,)
# T x B x C -> B x T x C
all_hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in all_hidden_states)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if output_attentions else None
x = tf.transpose(x, perm=(1, 0, 2))
encoder_hidden_states = tf.transpose(encoder_hidden_states, perm=(1, 0, 2)) # could maybe be avoided.
next_cache = (encoder_hidden_states, next_decoder_cache) if use_cache else None
if not return_dict:
return x, next_cache, all_hidden_states, all_self_attns
else:
return TFBaseModelOutputWithPast(
last_hidden_state=x,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _reorder_buffer(attn_cache, new_order):
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = tf.gather(input_buffer_k, new_order, axis=0)
return attn_cache
class TFAttention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
encoder_decoder_attention=False, # otherwise self_attention
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.encoder_decoder_attention = encoder_decoder_attention
self.k_proj = Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = Dense(embed_dim, use_bias=bias, name="out_proj")
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"
def _shape(self, tensor: tf.Tensor, dim_0, bsz) -> tf.Tensor:
reshaped_T_B_D = tf.reshape(tensor, (dim_0, bsz * self.num_heads, self.head_dim))
return tf.transpose(reshaped_T_B_D, perm=(1, 0, 2))
def call(
self,
query: tf.Tensor,
key: tf.Tensor,
key_padding_mask: Optional[tf.Tensor] = None,
layer_state: Optional[Dict[str, tf.Tensor]] = None,
attn_mask: Optional[Tensor] = None,
training=False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
"""
static_kv = self.encoder_decoder_attention # value=key=encoder_hidden_states,
tgt_len, bsz, embed_dim = query.shape
assert embed_dim == self.embed_dim, f"query must be shaped {(tgt_len, bsz, self.embed_dim)} got {query.shape}"
# get here for encoder decoder cause of static_kv
if layer_state is not None: # get the last k and v for reuse
saved_state = layer_state.get(self.cache_key, {})
if "prev_key" in saved_state:
# previous time steps are cached - no need to recompute key and value if they are static
if static_kv:
key = None
else:
# this branch is hit by encoder
saved_state = None
# Project query key values using weights q_proj, k_proj, v_proj
q = self.q_proj(query) * self.scaling
if static_kv and key is None: # cross-attention with cache
k = v = None
elif static_kv and key is not None: # cross-attention no prev_key found in cache
k = self.k_proj(key)
v = self.v_proj(key)
else: # self-attention
k = self.k_proj(query)
v = self.v_proj(query)
# Reshape
q = self._shape(q, tgt_len, bsz)
if k is not None:
k = self._shape(k, -1, bsz)
v = self._shape(v, -1, bsz)
if saved_state: # read from cache
k, v = self._concat_saved_state(k, v, saved_state, static_kv, bsz)
if layer_state is not None: # Write to cache every decoder call
cached_shape = (bsz, self.num_heads, -1, self.head_dim) # bsz must be first for reorder_cache
layer_state[self.cache_key] = dict(
prev_key=tf.reshape(k, cached_shape), prev_value=tf.reshape(v, cached_shape)
)
# Compute multi-headed attention
src_len = k.shape[1]
attn_weights = tf.matmul(q, k, transpose_b=True) # shape (bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
assert attn_mask.dtype == tf.float32, f"expected dtype tf.float32 got {attn_mask.dtype}"
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attn_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
if key_padding_mask.dtype == tf.bool:
key_padding_mask = tf.cast(key_padding_mask, attn_weights.dtype) * -1e9
extended_mask = tf.expand_dims(tf.expand_dims(key_padding_mask, 1), 2)
attn_weights = attn_weights + extended_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout if training else 0.0)
attn_output = tf.matmul(attn_probs, v) # shape: (bsz * self.num_heads, tgt_len, self.head_dim)
attn_output = tf.transpose(attn_output, perm=(1, 0, 2))
attn_output = tf.reshape(attn_output, (tgt_len, bsz, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights
def _concat_saved_state(self, k, v, saved_state, static_kv, bsz) -> Tuple[tf.Tensor]:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
prev_key = tf.reshape(saved_state["prev_key"], (bsz * self.num_heads, -1, self.head_dim))
k = prev_key if static_kv else tf.concat([prev_key, k], axis=1)
prev_value = tf.reshape(saved_state["prev_value"], (bsz * self.num_heads, -1, self.head_dim))
v = prev_value if static_kv else tf.concat([prev_value, v], axis=1)
return k, v
class TFLearnedPositionalEmbedding(TFSharedEmbeddings):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, offset, **kwargs):
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models dont have this hack
self.offset = offset
assert padding_idx is not None, "padding_idx cannot be None"
num_embeddings += offset
super().__init__(num_embeddings, embedding_dim, **kwargs)
def call(self, input_ids: tf.Tensor, use_cache=False):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
if use_cache:
positions = tf.fill((1, 1), seq_len - 1)
else:
# starts at 0, ends at 1-seq_len
positions = tf.range(0, seq_len, delta=1, dtype=tf.int32, name="range")
return super().call(positions + self.offset) # super object is not callable for some reason
# Public API
@add_start_docstrings(
"The bare BART Model outputting raw hidden-states without any specific head on top.",
BART_START_DOCSTRING,
)
@keras_serializable
class TFBartModel(TFPretrainedBartModel):
def __init__(self, config: BartConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="model.shared")
with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name:
pass
embed_tokens = _NoLayerEmbedTokens(self.shared, abs_scope_name=shared_abs_scope_name)
embed_tokens.vocab_size = self.shared.vocab_size
embed_tokens.hidden_size = self.shared.hidden_size
self.encoder = TFBartEncoder(config, embed_tokens, name="encoder")
self.decoder = TFBartDecoder(config, embed_tokens, name="decoder")
def _prepare_bart_decoder_inputs(
self,
inputs,
decoder_input_ids=None,
decoder_attn_mask=None,
mask_dtype=None,
):
"""Prepare masks that ignore padding tokens decoder and a causal lm mask for the decoder if
none are provided. This mimics the default behavior in fairseq. To override it pass in masks.
"""
pad_token_id = self.config.pad_token_id
if decoder_input_ids is None:
decoder_input_ids = self._shift_right(inputs)
bsz, tgt_len = decoder_input_ids.shape[:2]
if decoder_attn_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
else:
decoder_padding_mask = invert_mask(tf.Tensor)
causal_lm_mask = causal_attention_mask(tgt_len, tgt_len, mask_dtype)
return decoder_input_ids, decoder_padding_mask, causal_lm_mask
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
inputs,
attention_mask=None,
decoder_input_ids=None, # BAD DEFAULT LEFT FOR CONSISTENT SIGNATURE
decoder_attention_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
"""
Returns:
"""
assert "decoder_cached_states" not in kwargs, "Please use past_key_values to cache intermediate outputs"
if isinstance(inputs, (tuple, list)):
assert len(inputs) <= 10, "Too many inputs."
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
decoder_input_ids = inputs[2] if len(inputs) > 2 else decoder_input_ids
decoder_attention_mask = inputs[3] if len(inputs) > 3 else decoder_attention_mask
encoder_outputs = inputs[4] if len(inputs) > 4 else encoder_outputs
past_key_values = inputs[5] if len(inputs) > 5 else past_key_values
use_cache = inputs[6] if len(inputs) > 6 else use_cache
output_attentions = inputs[7] if len(inputs) > 7 else output_attentions
output_hidden_states = inputs[8] if len(inputs) > 8 else output_hidden_states
return_dict = inputs[9] if len(inputs) > 9 else return_dict
elif isinstance(inputs, (dict, BatchEncoding)):
assert len(inputs) <= 10, "Too many inputs."
if "inputs" in inputs:
raise ValueError("Using `inputs` as a keyword argument is deprecated. Please use `input_ids` instead.")
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
decoder_input_ids = inputs.get("decoder_input_ids", decoder_input_ids)
decoder_attention_mask = inputs.get("decoder_attention_mask", decoder_attention_mask)
encoder_outputs = inputs.get("encoder_outputs", encoder_outputs)
past_key_values = inputs.get("past_key_values", past_key_values)
use_cache = inputs.get("use_cache", use_cache)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
else:
input_ids = inputs
use_cache = use_cache if use_cache is not None else self.config.use_cache
if decoder_input_ids is None: # Classification
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if not use_cache:
decoder_input_ids, decoder_padding_mask, causal_mask = self._prepare_bart_decoder_inputs(
inputs,
decoder_input_ids=decoder_input_ids,
decoder_attn_mask=decoder_attention_mask,
mask_dtype=self.shared.dtype,
)
else:
decoder_padding_mask, causal_mask = None, None
assert (
isinstance(encoder_outputs, TFBaseModelOutput) or encoder_outputs is None
), f"got unexpected encoder outputs type {type(encoder_outputs)}"
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
decoder_outputs = self.decoder(
decoder_input_ids,
encoder_outputs.last_hidden_state,
attention_mask,
decoder_padding_mask,
decoder_causal_mask=causal_mask,
decoder_cached_states=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
# Attention and hidden_states will be [] or None if they aren't needed
return tuple(x for x in decoder_outputs + encoder_outputs.to_tuple() if x is not None)
else:
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
def get_output_embeddings(self):
return self.shared
@add_start_docstrings(
"The BART Model with a language modeling head. Can be used for summarization.",
BART_START_DOCSTRING,
)
class TFBartForConditionalGeneration(TFPretrainedBartModel):
base_model_prefix = "model"
authorized_missing_keys = [
r"final_logits_bias",
r"encoder\.version",
r"decoder\.version",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
]
def __init__(self, config: BartConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.model = TFBartModel(config, name="model")
self.use_cache = config.use_cache
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
inputs,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Returns:
Examples::
# Mask filling only works for bart-large
from transformers import BartTokenizer, TFBartForConditionalGeneration
import tensorflow as tf
mname = 'facebook/bart-large'
tokenizer = BartTokenizer.from_pretrained(mname)
TXT = "My friends are <mask> but they eat too many carbs."
model = TFBartForConditionalGeneration.from_pretrained(mname)
batch = tokenizer([TXT], return_tensors='tf')
logits = model(inputs=batch.input_ids, return_dict=True).logits
probs = tf.nn.softmax(logits[0])
# probs[5] is associated with the mask token
"""
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
decoder_input_ids = inputs[2] if len(inputs) > 2 else decoder_input_ids
decoder_attention_mask = inputs[3] if len(inputs) > 3 else decoder_attention_mask
encoder_outputs = inputs[4] if len(inputs) > 4 else encoder_outputs
past_key_values = inputs[5] if len(inputs) > 5 else past_key_values
labels = inputs[6] if len(inputs) > 6 else labels
use_cache = inputs[7] if len(inputs) > 7 else use_cache
output_attentions = inputs[8] if len(inputs) > 8 else output_attentions
output_hidden_states = inputs[9] if len(inputs) > 9 else output_hidden_states
return_dict = inputs[10] if len(inputs) > 10 else return_dict
assert len(inputs) <= 13, "Too many inputs."
elif isinstance(inputs, (dict, BatchEncoding)):
if "inputs" in inputs:
warnings.warn("Using `inputs` as a keyword argument is deprecated. Please use `input_ids` instead.")
if "past_key_value_states" in inputs:
raise ValueError(PAST_KV_DEPRECATION_WARNING)
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
decoder_input_ids = inputs.get("decoder_input_ids", decoder_input_ids)
decoder_attention_mask = inputs.get("decoder_attention_mask", decoder_attention_mask)
encoder_outputs = inputs.get("encoder_outputs", encoder_outputs)
past_key_values = inputs.get("past_key_values", past_key_values)
labels = inputs.get("labels", labels)
use_cache = inputs.get("use_cache", use_cache)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
assert len(inputs) <= 13, "Too many inputs."
else:
input_ids = inputs
if "past_key_value_states" in kwargs:
raise ValueError(PAST_KV_DEPRECATION_WARNING)
output_attentions = output_attentions if output_attentions else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if labels is not None:
use_cache = False
outputs: TFSeq2SeqModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True, # TODO(SS): this may need to change to support compilation
)
logits = self.model.shared(outputs.last_hidden_state, mode="linear")
loss = None if labels is None else self.compute_loss(labels, logits)
past = outputs.past_key_values if cast_bool_to_primitive(use_cache, self.config.use_cache) else None
if return_dict:
return TFSeq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=past, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
encoder_last_hidden_state=outputs.last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
else:
if past is not None:
decoder_outputs = (past,)
else:
decoder_outputs = tuple(
[x for x in (outputs.decoder_hidden_states, outputs.decoder_attentions) if x is not None]
)
enc_out = (outputs.encoder_last_hidden_state, outputs.encoder_hidden_states, outputs.encoder_attentions)
encoder_outputs = tuple(x for x in enc_out if x is not None)
output: Tuple = (logits,) + decoder_outputs + encoder_outputs
return ((loss,) + output) if loss is not None else output
def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache=True, **kwargs) -> Dict:
assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}"
if len(past) == 1:
assert isinstance(past[0], tf.Tensor)
encoder_outputs = TFBaseModelOutput(last_hidden_state=past[0])
decoder_cached_states = None
else:
assert len(past) == 2
encoder_outputs, decoder_cached_states = past
if isinstance(encoder_outputs, tuple):
assert isinstance(encoder_outputs[0], tf.Tensor)
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs[0])
elif isinstance(encoder_outputs, tf.Tensor):
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs)
assert (
decoder_cached_states
), f"decoder cached states must be truthy. got {decoder_cached_states} from the 2nd element of past"
assert isinstance(
encoder_outputs, TFBaseModelOutput
), "encoder_outputs should be a TFBaseModelOutput, Instead got "
return {
"inputs": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": decoder_cached_states,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past, beam_idx):
assert len(past) == 2
(encoder_out, decoder_cached_states) = past
reordered_past = []
for layer_past in decoder_cached_states:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
reordered_past.append(layer_past_new)
past = (encoder_out, reordered_past)
return past
def adjust_logits_during_generation(self, logits, cur_len, max_length):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
logits = self._force_token_id_to_be_generated(logits, self.config.bos_token_id)
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
logits = self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id) -> None:
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
output_list = []
# Is there a better way to do scores[:, [x for if x != token_id]] = -float("inf") in TF?
bs, vocab_size = scores.shape
for x in range(vocab_size):
if x != token_id:
output_list.append(tf.convert_to_tensor([-float("inf")] * bs, dtype=scores.dtype))
else:
output_list.append(scores[:, x])
scores = tf.stack(output_list, axis=1, name="scores")
assert scores.shape == (bs, vocab_size)
return scores
def get_output_embeddings(self):
return self.model.shared
def get_encoder(self):
return self.model.encoder
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)
......@@ -717,7 +717,7 @@ BERT_START_DOCSTRING = r"""
Args:
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
......
......@@ -229,7 +229,7 @@ def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, a
else:
logger.warning(
f"All the weights of {tf_model.__class__.__name__} were initialized from the PyTorch model.\n"
f"If your task is similar to the task the model of the ckeckpoint was trained on, "
f"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {tf_model.__class__.__name__} for predictions without further training."
)
......@@ -383,7 +383,7 @@ def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=F
else:
logger.warning(
f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n"
f"If your task is similar to the task the model of the ckeckpoint was trained on, "
f"If your task is similar to the task the model of the checkpoint was trained on, "
f"you can already use {pt_model.__class__.__name__} for predictions without further training."
)
......
......@@ -20,6 +20,7 @@ import copy
import itertools
import math
import warnings
from typing import Tuple
import tensorflow as tf
......@@ -594,7 +595,7 @@ class TFT5MainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
training=False,
**kwargs,
):
) -> Tuple:
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
......@@ -699,7 +700,7 @@ class TFT5MainLayer(tf.keras.layers.Layer):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and -1e9 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
......@@ -721,7 +722,7 @@ class TFT5MainLayer(tf.keras.layers.Layer):
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposistion
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
......@@ -1417,7 +1418,7 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
"use_cache": use_cache,
}
def _reorder_cache(self, past, beam_idx):
def _reorder_cache(self, past, beam_idx) -> Tuple:
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
......
......@@ -136,8 +136,7 @@ class TFCausalLanguageModelingLoss:
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
# make sure only labels that are not equal to -100
# are taken into account as loss
# make sure only labels that are not equal to -100 do not affect loss
active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
......
......@@ -1945,11 +1945,6 @@ class SummarizationPipeline(Pipeline):
assert return_tensors or return_text, "You must specify return_tensors=True or return_text=True"
assert len(documents) > 0, "Please provide a document to summarize"
if self.framework == "tf" and "BartForConditionalGeneration" in self.model.__class__.__name__:
raise NotImplementedError(
"Tensorflow is not yet supported for Bart. Please consider using T5, e.g. `t5-base`"
)
prefix = self.model.config.prefix if self.model.config.prefix is not None else ""
if isinstance(documents[0], list):
......
......@@ -212,6 +212,24 @@ class TFAutoModelWithLMHead:
requires_tf(self)
class TFBartForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBartModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -565,6 +565,7 @@ class BartModelIntegrationTests(unittest.TestCase):
[FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY],
max_length=1024,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="pt",
)
......@@ -575,6 +576,7 @@ class BartModelIntegrationTests(unittest.TestCase):
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=2,
)
assert hypotheses_batch[:, 1].eq(0).all().item()
EXPECTED = [
"A French prosecutor says he is not aware of any video footage from on board the plane. Two German "
......@@ -649,3 +651,67 @@ class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
assert c().to_dict().keys() == parent_keys # traceback is very nice on it's own
# check that test is not stupid
assert BertConfig().to_dict().keys() != parent_keys
@require_torch
@slow
class FastIntegrationTests(unittest.TestCase):
"""These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer."""
@cached_property
def tok(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def xsum_1_1_model(self):
return BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1")
def test_xsum_1_1_generation(self):
hf = self.xsum_1_1_model
tok = self.tok
ARTICLE = 'The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes.'
EXPECTED = " The International Criminal Court (ICC) has announced that it has been announced by the International Criminal court."
dct = tok(ARTICLE, return_tensors="pt")
generated_ids = hf.generate(**dct, num_beams=4)
result = tok.batch_decode(generated_ids, skip_special_tokens=True)[0]
assert EXPECTED == result
def test_xsum_1_1_batch_generation(self):
# test batch
batch = self.tok(
[
'The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes.',
'The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close to the investigation. "One can hear cries of \'My God\' in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt, editor-in-chief of Bild online. An official with France\'s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said, but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working hand-in-hand with investigators. But none of the cell phones found so far have been sent to the institute, Menichini said. Asked whether staff involved in the search could have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered cell phones from the crash site after Bild and Paris Match published their reports. "That is something we did not know before. ... Overall we can say many things of the investigation weren\'t revealed by the investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the controls of Germanwings Flight 9525, which he\'s accused of deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa said, included medical documents he submitted in connection with resuming his flight training. The announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz\'s battle with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was sharing the information and documents -- including training and medical records -- with public prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the past week to recover human remains and plane debris scattered across a steep mountainside. He saw the crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no visible human remains were left at the site but recovery teams would keep searching. French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested. In the meantime, the recovery of the victims\' personal belongings will start Wednesday, Menichini said. Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew on board. Check out the latest from our correspondents . The details about Lubitz\'s correspondence with the flight school during his training were among several developments as investigators continued to delve into what caused the crash and Lubitz\'s possible motive for downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent psychotherapy before he got his pilot\'s license. Kumpa emphasized there\'s no evidence suggesting Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to lose his pilot\'s license, a European government official briefed on the investigation told CNN on Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being considered. Another source, a law enforcement official briefed on the investigation, also told CNN that authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly because of his medical problems. Lubitz\'s girlfriend told investigators he had seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had psychological issues, the European government official said. But no matter what details emerge about his previous mental health struggles, there\'s more to the story, said Brian Russell, a forensic psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact that maybe they weren\'t going to keep doing their job and they\'re upset about that and so they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to also take that rage and turn it outward on 149 other people who had nothing to do with the person\'s problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight 9525? CNN\'s Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura Smith-Spark wrote from London. CNN\'s Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.',
],
return_tensors="pt",
padding="longest",
truncation=True,
)
generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4)
result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)
assert (
result[0]
== " The International Criminal Court (ICC) has announced that it has been announced by the International Criminal court."
)
assert (
result[1]
== " An investigation into the crash that killed at least 10 people in the French capital has been released by the French police investigating the crash."
)
def test_encoder_equiv(self):
# test batch
batch = self.tok(
[
'The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes.',
'The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close to the investigation. "One can hear cries of \'My God\' in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt, editor-in-chief of Bild online. An official with France\'s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said, but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working hand-in-hand with investigators. But none of the cell phones found so far have been sent to the institute, Menichini said. Asked whether staff involved in the search could have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered cell phones from the crash site after Bild and Paris Match published their reports. "That is something we did not know before. ... Overall we can say many things of the investigation weren\'t revealed by the investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the controls of Germanwings Flight 9525, which he\'s accused of deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa said, included medical documents he submitted in connection with resuming his flight training. The announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz\'s battle with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was sharing the information and documents -- including training and medical records -- with public prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the past week to recover human remains and plane debris scattered across a steep mountainside. He saw the crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no visible human remains were left at the site but recovery teams would keep searching. French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested. In the meantime, the recovery of the victims\' personal belongings will start Wednesday, Menichini said. Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew on board. Check out the latest from our correspondents . The details about Lubitz\'s correspondence with the flight school during his training were among several developments as investigators continued to delve into what caused the crash and Lubitz\'s possible motive for downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent psychotherapy before he got his pilot\'s license. Kumpa emphasized there\'s no evidence suggesting Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to lose his pilot\'s license, a European government official briefed on the investigation told CNN on Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being considered. Another source, a law enforcement official briefed on the investigation, also told CNN that authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly because of his medical problems. Lubitz\'s girlfriend told investigators he had seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had psychological issues, the European government official said. But no matter what details emerge about his previous mental health struggles, there\'s more to the story, said Brian Russell, a forensic psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact that maybe they weren\'t going to keep doing their job and they\'re upset about that and so they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to also take that rage and turn it outward on 149 other people who had nothing to do with the person\'s problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight 9525? CNN\'s Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura Smith-Spark wrote from London. CNN\'s Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.',
],
return_tensors="pt",
padding="longest",
truncation=True,
)
features = self.xsum_1_1_model.get_encoder()(**batch, return_dict=True).last_hidden_state
expected = [[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]]
assert_tensors_close(features[0, :3, :3], torch.tensor(expected), atol=1e-3)
# coding=utf-8
# Copyright 2020 The Huggingface Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import is_tf_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_tf, require_torch, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers import BartConfig, TFBartForConditionalGeneration, TFBartModel
from transformers.tokenization_bart import BartTokenizer
@require_tf
class ModelTester:
def __init__(self, parent):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_labels = False
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 20
self.eos_token_ids = [2]
self.pad_token_id = 1
self.bos_token_id = 0
# torch.manual_seed(0)
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([2] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
input_ids = tf.clip_by_value(input_ids, 3, self.vocab_size + 1)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_ids=[2],
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
)
inputs_dict = prepare_bart_inputs_dict(config, input_ids)
return config, inputs_dict
def prepare_bart_inputs_dict(
config,
input_ids,
attention_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
return {
"input_ids": input_ids,
"decoder_input_ids": input_ids,
"attention_mask": attention_mask,
}
@require_tf
class TestTFBart(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFBartForConditionalGeneration, TFBartModel) if is_tf_available() else ()
all_generative_model_classes = (TFBartForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
def setUp(self):
self.model_tester = ModelTester(self)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_inputs_embeds(self):
# inputs_embeds not supported
pass
def test_compile_tf_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
model_class = TFBartForConditionalGeneration
input_ids = {
"decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
"input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
}
# Prepare our model
model = model_class(config)
model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving.
# Let's load it from the disk to be sure we can use pretrained weights
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
outputs_dict = model(input_ids)
hidden_states = outputs_dict[0]
# Add a dense layer on top to test integration with other keras modules
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
# Compile extended model
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_saved_model_with_hidden_states_output(self):
# Should be uncommented during patrick TF refactor
pass
def test_saved_model_with_attentions_output(self):
# Should be uncommented during patrick TF refactor
pass
@require_tf
class TFBartHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
eos_column_vector = tf.ones((4, 1), dtype=tf.int32) * 2
input_ids = tf.concat([ids_tensor((4, 6), self.vocab_size - 3) + 3, eos_column_vector], axis=1)
batch_size = input_ids.shape[0]
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
return_dict=True,
decoder_start_token_id=2,
)
return config, input_ids, batch_size
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
decoder_lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size)
lm_model = TFBartForConditionalGeneration(config)
outputs = lm_model(inputs=input_ids, lm_labels=decoder_lm_labels, decoder_input_ids=input_ids, use_cache=False)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs.logits.shape, expected_shape)
def test_lm_uneven_forward(self):
config = BartConfig(
vocab_size=10,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
return_dict=True,
)
lm_model = TFBartForConditionalGeneration(config)
context = tf.fill((7, 2), 4)
summary = tf.fill((7, 7), 6)
outputs = lm_model(inputs=context, decoder_input_ids=summary, use_cache=False)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs.logits.shape, expected_shape)
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if tf.debugging.assert_near(a, b, atol=atol):
return True
raise
except Exception:
msg = "{} != {}".format(a, b)
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return tf.constant(tok_lst, dtype=tf.int32)
TOLERANCE = 1e-4
@require_tf
@require_torch
@slow
class TFBartModelIntegrationTest(unittest.TestCase):
def test_inference_no_head(self):
model = TFBartModel.from_pretrained("facebook/bart-large", from_pt=True)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
inputs_dict = prepare_bart_inputs_dict(model.config, input_ids)
# with torch.no_grad():
output = model(**inputs_dict)[0]
expected_shape = (1, 11, 1024)
self.assertEqual(output.shape, expected_shape)
expected_slice = tf.Tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]],
)
self.assertTrue(tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE))
def test_cnn_summarization_same_as_fairseq_hard(self):
hf = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn", from_pt=True)
tok = self.tok
FRANCE_ARTICLE = ' Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close to the investigation. "One can hear cries of \'My God\' in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt, editor-in-chief of Bild online. An official with France\'s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said, but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working hand-in-hand with investigators. But none of the cell phones found so far have been sent to the institute, Menichini said. Asked whether staff involved in the search could have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered cell phones from the crash site after Bild and Paris Match published their reports. "That is something we did not know before. ... Overall we can say many things of the investigation weren\'t revealed by the investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the controls of Germanwings Flight 9525, which he\'s accused of deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa said, included medical documents he submitted in connection with resuming his flight training. The announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz\'s battle with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was sharing the information and documents -- including training and medical records -- with public prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the past week to recover human remains and plane debris scattered across a steep mountainside. He saw the crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no visible human remains were left at the site but recovery teams would keep searching. French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested. In the meantime, the recovery of the victims\' personal belongings will start Wednesday, Menichini said. Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew on board. Check out the latest from our correspondents . The details about Lubitz\'s correspondence with the flight school during his training were among several developments as investigators continued to delve into what caused the crash and Lubitz\'s possible motive for downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent psychotherapy before he got his pilot\'s license. Kumpa emphasized there\'s no evidence suggesting Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to lose his pilot\'s license, a European government official briefed on the investigation told CNN on Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being considered. Another source, a law enforcement official briefed on the investigation, also told CNN that authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly because of his medical problems. Lubitz\'s girlfriend told investigators he had seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had psychological issues, the European government official said. But no matter what details emerge about his previous mental health struggles, there\'s more to the story, said Brian Russell, a forensic psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact that maybe they weren\'t going to keep doing their job and they\'re upset about that and so they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to also take that rage and turn it outward on 149 other people who had nothing to do with the person\'s problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight 9525? CNN\'s Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura Smith-Spark wrote from London. CNN\'s Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.' # @noqa
EXPECTED_SUMMARY_FRANCE = 'French prosecutor says he\'s not aware of any video footage from on board the plane. German daily Bild and French Paris Match claim to have found a cell phone video of the crash. A French Gendarmerie spokesman calls the reports "completely wrong" and "unwarranted" German airline Lufthansa confirms co-pilot Andreas Lubitz had battled depression.'
SHORTER_ARTICLE = ' (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes. CNN\'s Vasco Cotovio, Kareem Khadder and Faith Karimi contributed to this report.'
EXPECTED_SUMMARY_SHORTER = "The Palestinian Authority becomes the 123rd member of the International Criminal Court. The move gives the court jurisdiction over alleged crimes in Palestinian territories. Israel and the United States opposed the Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki said it was a move toward greater justice."
# The below article tests that we don't add any hypotheses outside of the top n_beams
IRAN_ARTICLE = " (CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger. Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a letter to the Iranian leadership warning them away from a deal. The debate that has already begun since the announcement of the new framework will likely result in more heat than light. It will not be helped by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: . The most misleading assertion, despite universal rejection by experts, is that the negotiations' objective at the outset was the total elimination of any nuclear program in Iran. That is the position of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it had been, there would have been no Iranian team at the negotiating table. Rather, the objective has always been to structure an agreement or series of agreements so that Iran could not covertly develop a nuclear arsenal before the United States and its allies could respond. The new framework has exceeded expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite sharp accusations by some in the United States and its allies, Iran denies having such a program, and U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's continued cooperation with International Atomic Energy Agency inspections is further evidence on this point, and we'll know even more about Iran's program in the coming months and years because of the deal. In fact, the inspections provisions that are part of this agreement are designed to protect against any covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter warning that a deal might be killed by Congress or a future president). This of course is not the case. The talks were between Iran and the five permanent members of the U.N. Security Council (United States, United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the agreement should be a formal treaty requiring the Senate to \"advise and consent.\" But the issue is not suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement with Iran will not be so balanced. The restrictions and obligations in the final framework agreement will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally some insist that any agreement must address Iranian missile programs, human rights violations or support for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in the negotiations would be a poison pill. This agreement should be judged on its merits and on how it affects the security of our negotiating partners and allies, including Israel. Those judgments should be fact-based, not based on questionable assertions or dubious assumptions."
EXPECTED_SUMMARY_IRAN = "The U.S. and its negotiating partners reached a very strong framework agreement with Iran. Peter Bergen: The debate that has already begun will likely result in more heat than light. He says the agreement limits Iran's nuclear program in such a way as to effectively block it from building a nuclear weapon. Bergen says the most important aim of a nuclear deal is preventing a nuclear Iran."
ARTICLE_SUBWAY = ' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the 2010 marriage license application, according to court documents. Prosecutors said the marriages were part of an immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages. Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted. The case was referred to the Bronx District Attorney\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\'s Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt, Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18.'
EXPECTED_SUMMARY_SUBWAY = "Liana Barrientos has been married 10 times, sometimes within two weeks of each other. Prosecutors say the marriages were part of an immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx. She was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the subway."
dct = tok(
[FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY],
max_length=1024,
truncation_strategy="only_first",
padding="longest",
truncation=True,
return_tensors="tf",
)
self.assertEqual(1024, dct["input_ids"].shape[1])
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
)
assert hypotheses_batch[:, 1].numpy().tolist() == [0, 0, 0, 0] # test force_bos_token_to_be_generated
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False)
expected_batch = [
EXPECTED_SUMMARY_FRANCE,
EXPECTED_SUMMARY_SHORTER,
EXPECTED_SUMMARY_IRAN,
EXPECTED_SUMMARY_SUBWAY,
]
assert decoded == expected_batch
@cached_property
def tok(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@slow
@require_tf
class FasterTFBartModelIntegrationTests(unittest.TestCase):
"""These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer."""
@cached_property
def tok(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def xsum_1_1_model(self):
return TFBartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1")
def test_xsum_1_1_generation(self):
model = self.xsum_1_1_model
assert model.model.decoder.embed_tokens._layer == model.model.shared
ARTICLE = 'The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes.'
dct = self.tok(ARTICLE, return_tensors="tf")
generated_ids = model.generate(**dct, num_beams=4)
result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)[0]
assert (
result
== " The International Criminal Court (ICC) has announced that it has been announced by the International Criminal court."
)
def test_xsum_1_1_batch_generation(self):
batch = self.tok(
[
'The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes.',
'The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close to the investigation. "One can hear cries of \'My God\' in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt, editor-in-chief of Bild online. An official with France\'s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said, but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working hand-in-hand with investigators. But none of the cell phones found so far have been sent to the institute, Menichini said. Asked whether staff involved in the search could have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered cell phones from the crash site after Bild and Paris Match published their reports. "That is something we did not know before. ... Overall we can say many things of the investigation weren\'t revealed by the investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the controls of Germanwings Flight 9525, which he\'s accused of deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa said, included medical documents he submitted in connection with resuming his flight training. The announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz\'s battle with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was sharing the information and documents -- including training and medical records -- with public prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the past week to recover human remains and plane debris scattered across a steep mountainside. He saw the crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no visible human remains were left at the site but recovery teams would keep searching. French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested. In the meantime, the recovery of the victims\' personal belongings will start Wednesday, Menichini said. Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew on board. Check out the latest from our correspondents . The details about Lubitz\'s correspondence with the flight school during his training were among several developments as investigators continued to delve into what caused the crash and Lubitz\'s possible motive for downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent psychotherapy before he got his pilot\'s license. Kumpa emphasized there\'s no evidence suggesting Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to lose his pilot\'s license, a European government official briefed on the investigation told CNN on Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being considered. Another source, a law enforcement official briefed on the investigation, also told CNN that authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly because of his medical problems. Lubitz\'s girlfriend told investigators he had seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had psychological issues, the European government official said. But no matter what details emerge about his previous mental health struggles, there\'s more to the story, said Brian Russell, a forensic psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact that maybe they weren\'t going to keep doing their job and they\'re upset about that and so they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to also take that rage and turn it outward on 149 other people who had nothing to do with the person\'s problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight 9525? CNN\'s Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura Smith-Spark wrote from London. CNN\'s Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.',
],
return_tensors="tf",
padding="longest",
truncation=True,
)
generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4)
result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)
assert (
result[0]
== " The International Criminal Court (ICC) has announced that it has been announced by the International Criminal court."
)
assert (
result[1]
== " An investigation into the crash that killed at least 10 people in the French capital has been released by the French police investigating the crash."
)
def test_encoder_equiv(self):
batch = self.tok(
[
'The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC\'s founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians\' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday\'s ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court\'s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What\'s objectionable is the attempts to undermine international justice, not Palestine\'s decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes.',
'The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close to the investigation. "One can hear cries of \'My God\' in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt, editor-in-chief of Bild online. An official with France\'s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said, but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working hand-in-hand with investigators. But none of the cell phones found so far have been sent to the institute, Menichini said. Asked whether staff involved in the search could have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered cell phones from the crash site after Bild and Paris Match published their reports. "That is something we did not know before. ... Overall we can say many things of the investigation weren\'t revealed by the investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the controls of Germanwings Flight 9525, which he\'s accused of deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa said, included medical documents he submitted in connection with resuming his flight training. The announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz\'s battle with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was sharing the information and documents -- including training and medical records -- with public prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the past week to recover human remains and plane debris scattered across a steep mountainside. He saw the crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no visible human remains were left at the site but recovery teams would keep searching. French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested. In the meantime, the recovery of the victims\' personal belongings will start Wednesday, Menichini said. Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew on board. Check out the latest from our correspondents . The details about Lubitz\'s correspondence with the flight school during his training were among several developments as investigators continued to delve into what caused the crash and Lubitz\'s possible motive for downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent psychotherapy before he got his pilot\'s license. Kumpa emphasized there\'s no evidence suggesting Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to lose his pilot\'s license, a European government official briefed on the investigation told CNN on Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being considered. Another source, a law enforcement official briefed on the investigation, also told CNN that authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly because of his medical problems. Lubitz\'s girlfriend told investigators he had seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had psychological issues, the European government official said. But no matter what details emerge about his previous mental health struggles, there\'s more to the story, said Brian Russell, a forensic psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact that maybe they weren\'t going to keep doing their job and they\'re upset about that and so they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to also take that rage and turn it outward on 149 other people who had nothing to do with the person\'s problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight 9525? CNN\'s Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura Smith-Spark wrote from London. CNN\'s Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.',
],
return_tensors="tf",
padding="longest",
truncation=True,
)
features = self.xsum_1_1_model.get_encoder()(**batch, return_dict=True).last_hidden_state
import numpy as np
expected = np.array([[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]])
assert np.allclose(features[0, :3, :3].numpy(), expected, atol=1e-3)
......@@ -302,7 +302,7 @@ class TFModelTesterMixin:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beggining
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
config.output_hidden_states = True
......@@ -472,10 +472,9 @@ class TFModelTesterMixin:
# Prepare our model
model = model_class(config)
model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving.
# Let's load it from the disk to be sure we can use pretrained weights
with tempfile.TemporaryDirectory() as tmpdirname:
outputs = model(self._prepare_for_class(inputs_dict, model_class)) # build the model
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
......@@ -494,7 +493,9 @@ class TFModelTesterMixin:
for model_class in self.all_model_classes:
model = model_class(config)
outputs_dict = model(self._prepare_for_class(inputs_dict, model_class))
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs_dict = model(inputs)
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
input_ids = inputs_keywords.pop("input_ids", None)
......@@ -507,28 +508,18 @@ class TFModelTesterMixin:
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
decoder_seq_length = (
self.model_tester.decoder_seq_length
if hasattr(self.model_tester, "decoder_seq_length")
else self.model_tester.seq_length
)
encoder_seq_length = (
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length
)
decoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
)
encoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["use_cache"] = False
config.output_hidden_states = False
model = model_class(config)
outputs = model(self._prepare_for_class(inputs_dict, model_class))
model_inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(model_inputs)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
......
......@@ -279,8 +279,7 @@ class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
@slow
def test_model_from_pretrained(self):
for model_name in ["t5-small"]:
model = TFT5Model.from_pretrained(model_name)
model = TFT5Model.from_pretrained("t5-small")
self.assertIsNotNone(model)
......
......@@ -21,7 +21,7 @@ FILL_MASK_FINETUNED_MODELS = ["sshleifer/tiny-distilroberta-base"]
LARGE_FILL_MASK_FINETUNED_MODELS = ["distilroberta-base"] # @slow
SUMMARIZATION_FINETUNED_MODELS = ["sshleifer/bart-tiny-random", "patrickvonplaten/t5-tiny-random"]
TF_SUMMARIZATION_FINETUNED_MODELS = ["patrickvonplaten/t5-tiny-random"]
TF_SUMMARIZATION_FINETUNED_MODELS = ["sshleifer/bart-tiny-random", "patrickvonplaten/t5-tiny-random"]
TRANSLATION_FINETUNED_MODELS = [
("patrickvonplaten/t5-tiny-random", "translation_en_to_de"),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment