@@ -11,17 +11,16 @@ by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
The model is a *uncased* model, which means that capital letters are simply converted to lower-case letters.
The model consits of a *question_encoder*, *retriever* and a *generator*. The retriever is extracts relevant passages from the *wiki_dpr*`train` datasets, which is linked above.
The model consits of a *question_encoder*, *retriever* and a *generator*. The retriever extracts relevant passages from the *wiki_dpr*`train` datasets, which is linked above.
The question_encoder and retriever are based on `facebook/dpr-question_encoder-single-nq-base` and `facebook/bart-large`, which were jointly finetuned on
on the *wiki_dpr* QA dataset in an end-to-end fashion.
## Usage:
**Note**: In the usage example below only the *dummy* retriever of *wiki_dpr* is used because the real retriever requires to over 40 GB of RAM.
The model can generate questions to any question as follows:
**Note**: In the usage example below only the *dummy* retriever of *wiki_dpr* is used because the complete *lecagy* index requires over 75 GB of RAM.
The model can generate answers to any factoid question as follows:
@@ -11,14 +11,14 @@ by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
The model is a *uncased* model, which means that capital letters are simply converted to lower-case letters.
The model consits of a *question_encoder*, *retriever* and a *generator*. The retriever is extracts relevant passages from the *wiki_dpr*`train` datasets, which is linked above.
The model consits of a *question_encoder*, *retriever* and a *generator*. The retriever extracts relevant passages from the *wiki_dpr*`train` datasets, which is linked above.
The question_encoder and retriever are based on `facebook/dpr-question_encoder-single-nq-base` and `facebook/bart-large`, which were jointly finetuned on
on the *wiki_dpr* QA dataset in an end-to-end fashion.
## Usage:
**Note**: In the usage example below only the *dummy* retriever of *wiki_dpr* is used because the real retriever requires to over 40 GB of RAM.
The model can generate questions to any question as follows:
**Note**: In the usage example below only the *dummy* retriever of *wiki_dpr* is used because the complete *lecagy* index requires over 75 GB of RAM.
The model can generate answers to any factoid question as follows: