Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
81ee29ee
Commit
81ee29ee
authored
Oct 10, 2019
by
Rémi Louf
Browse files
remove the staticmethod used to load the config
parent
d7092d59
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
17 deletions
+16
-17
transformers/modeling_bert.py
transformers/modeling_bert.py
+16
-17
No files found.
transformers/modeling_bert.py
View file @
81ee29ee
...
...
@@ -715,7 +715,7 @@ class BertDecoderModel(BertPreTrainedModel):
"""
def
__init__
(
self
,
config
):
super
(
BertModel
,
self
).
__init__
(
config
)
super
(
Bert
Decoder
Model
,
self
).
__init__
(
config
)
self
.
embeddings
=
BertEmbeddings
(
config
)
self
.
decoder
=
BertDecoder
(
config
)
...
...
@@ -1357,28 +1357,27 @@ class Bert2Rnd(BertPreTrainedModel):
pretrained weights we need to override the `from_pretrained` method of the base `PreTrainedModel`
class.
"""
pretrained_encoder
=
BertModel
.
from_pretrained
(
pretrained_model_or_path
,
*
model_args
,
**
model_kwargs
)
config
=
cls
.
_load_config
(
pretrained_model_or_path
,
*
model_args
,
**
model_kwargs
)
model
=
cls
(
config
)
model
.
encoder
=
pretrained_encoder
return
model
def
_load_config
(
self
,
pretrained_model_name_or_path
,
*
args
,
**
kwargs
):
config
=
kwargs
.
pop
(
'config'
,
None
)
# Load the configuration
config
=
model_
kwargs
.
pop
(
'config'
,
None
)
if
config
is
None
:
cache_dir
=
kwargs
.
pop
(
'cache_dir'
,
None
)
force_download
=
kwargs
.
pop
(
'force_download'
,
False
)
config
,
_
=
self
.
config_class
.
from_pretrained
(
pretrained_model_
name_
or_path
,
*
args
,
cache_dir
=
model_
kwargs
.
pop
(
'cache_dir'
,
None
)
force_download
=
model_
kwargs
.
pop
(
'force_download'
,
False
)
config
,
_
=
cls
.
config_class
.
from_pretrained
(
pretrained_model_or_path
,
*
model_
args
,
cache_dir
=
cache_dir
,
return_unused_kwargs
=
True
,
force_download
=
force_download
,
**
kwargs
**
model_
kwargs
)
return
config
model
=
cls
(
config
)
# The encoder is loaded with pretrained weights
pretrained_encoder
=
BertModel
.
from_pretrained
(
pretrained_model_or_path
,
*
model_args
,
**
model_kwargs
)
model
.
encoder
=
pretrained_encoder
return
model
def
forward
(
self
,
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
):
encoder_outputs
=
self
.
encoder
(
input_ids
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment