"docs/source/en/pipeline_tutorial.md" did not exist on "ba9da49aa298345022f35a0b7be44ce4c72b85c2"
Unverified Commit 814de8fa authored by Matt's avatar Matt Committed by GitHub
Browse files

Overhaul TF serving signatures + dummy inputs (#23234)

* Let's try autodetecting serving sigs

* Don't clobber existing sigs

* Change shapes for multiplechoice models

* Make default dummy inputs smarter too

* Fix missing f-string

* Let's YOLO a serving output too

* Read __class__.__name__ properly

* Don't just pass naked lists in there and expect it to be okay

* Code cleanup

* Update default serving sig

* Clearer error messages

* Further updates to the default serving output

* make fixup

* Update the serving output a bit more

* Cleanups and renames, raise errors appropriately when we can't infer inputs

* More renames

* we're building in a functional context again, yolo

* import DUMMY_INPUTS from the right place

* import DUMMY_INPUTS from the right place

* Support cross-attention in the dummies

* Support cross-attention in the dummies

* Complete removal of dummy/serving overrides in BERT

* Complete removal of dummy/serving overrides in RoBERTa

* Obliterate lots and lots of serving sig and dummy overrides

* merge type hint changes

* Fix for token_type_ids with vocab_size 1

* Add missing property decorator

* Fix T5 and hopefully some models that take conv inputs

* More signature pruning

* Fix T5's signature

* Fix Wav2Vec2 signature

* Fix LongformerForMultipleChoice input signature

* Fix BLIP and LED

* Better default serving output error handling

* Fix BART dummies

* Fix dummies for cross-attention, esp encoder-decoder models

* Fix visionencoderdecoder signature

* Fix BLIP serving output

* Small tweak to BART dummies

* Cleanup the ugly parameter inspection line that I used in a few places

* committed a breakpoint again

* Move the text_dims check

* Remove blip_text serving_output

* Add decoder_input_ids to the default input sig

* Remove all the manual overrides for encoder-decoder model signatures

* Tweak longformer/led input sigs

* Tweak default serving output

* output.keys() -> output

* make fixup
parent 3d7baef1
...@@ -27,7 +27,6 @@ from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWi ...@@ -27,7 +27,6 @@ from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWi
# Public API # Public API
from ...modeling_tf_utils import ( from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss, TFCausalLanguageModelingLoss,
TFModelInputType, TFModelInputType,
TFPreTrainedModel, TFPreTrainedModel,
...@@ -413,29 +412,6 @@ class TFOPTPreTrainedModel(TFPreTrainedModel): ...@@ -413,29 +412,6 @@ class TFOPTPreTrainedModel(TFPreTrainedModel):
config_class = OPTConfig config_class = OPTConfig
base_model_prefix = "model" base_model_prefix = "model"
@property
def dummy_inputs(self):
pad_token = 1
input_ids = tf.convert_to_tensor(DUMMY_INPUTS, dtype=tf.int32)
dummy_inputs = {
"attention_mask": tf.cast(input_ids != pad_token, tf.int32),
"input_ids": input_ids,
}
return dummy_inputs
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
OPT_INPUTS_DOCSTRING = r""" OPT_INPUTS_DOCSTRING = r"""
Args: Args:
......
...@@ -33,7 +33,6 @@ from ...modeling_tf_outputs import ( ...@@ -33,7 +33,6 @@ from ...modeling_tf_outputs import (
# Public API # Public API
from ...modeling_tf_utils import ( from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss, TFCausalLanguageModelingLoss,
TFModelInputType, TFModelInputType,
TFPreTrainedModel, TFPreTrainedModel,
...@@ -503,34 +502,6 @@ class TFPegasusPreTrainedModel(TFPreTrainedModel): ...@@ -503,34 +502,6 @@ class TFPegasusPreTrainedModel(TFPreTrainedModel):
config_class = PegasusConfig config_class = PegasusConfig
base_model_prefix = "model" base_model_prefix = "model"
@property
def dummy_inputs(self):
pad_token = 1
input_ids = tf.convert_to_tensor(DUMMY_INPUTS, dtype=tf.int32)
decoder_input_ids = tf.convert_to_tensor(DUMMY_INPUTS, dtype=tf.int32)
dummy_inputs = {
"decoder_input_ids": decoder_input_ids,
"attention_mask": tf.cast(input_ids != pad_token, tf.int32),
"input_ids": input_ids,
}
return dummy_inputs
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
}
]
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartPretrainedModel.serving
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
PEGASUS_START_DOCSTRING = r""" PEGASUS_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
""" TensorFlow RegNet model.""" """ TensorFlow RegNet model."""
from typing import Dict, Optional, Tuple, Union from typing import Optional, Tuple, Union
import tensorflow as tf import tensorflow as tf
...@@ -345,33 +345,8 @@ class TFRegNetPreTrainedModel(TFPreTrainedModel): ...@@ -345,33 +345,8 @@ class TFRegNetPreTrainedModel(TFPreTrainedModel):
main_input_name = "pixel_values" main_input_name = "pixel_values"
@property @property
def dummy_inputs(self) -> Dict[str, tf.Tensor]: def input_signature(self):
""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)}
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
VISION_DUMMY_INPUTS = tf.random.uniform(shape=(3, self.config.num_channels, 224, 224), dtype=tf.float32)
return {"pixel_values": tf.constant(VISION_DUMMY_INPUTS)}
@tf.function(
input_signature=[
{
"pixel_values": tf.TensorSpec((None, None, None, None), tf.float32, name="pixel_values"),
}
]
)
def serving(self, inputs):
"""
Method used for serving the model.
Args:
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
REGNET_START_DOCSTRING = r""" REGNET_START_DOCSTRING = r"""
...@@ -443,16 +418,6 @@ class TFRegNetModel(TFRegNetPreTrainedModel): ...@@ -443,16 +418,6 @@ class TFRegNetModel(TFRegNetPreTrainedModel):
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
) )
def serving_output(
self, output: TFBaseModelOutputWithPoolingAndNoAttention
) -> TFBaseModelOutputWithPoolingAndNoAttention:
# hidden_states not converted to Tensor with tf.convert_to_tensor as they are all of different dimensions
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
hidden_states=output.hidden_states,
)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -514,7 +479,3 @@ class TFRegNetForImageClassification(TFRegNetPreTrainedModel, TFSequenceClassifi ...@@ -514,7 +479,3 @@ class TFRegNetForImageClassification(TFRegNetPreTrainedModel, TFSequenceClassifi
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states) return TFSequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
# hidden_states not converted to Tensor with tf.convert_to_tensor as they are all of different dimensions
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=output.hidden_states)
...@@ -49,8 +49,6 @@ from ...modeling_tf_utils import ( ...@@ -49,8 +49,6 @@ from ...modeling_tf_utils import (
) )
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import ( from ...utils import (
DUMMY_INPUTS,
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
...@@ -812,24 +810,6 @@ class TFRemBertPreTrainedModel(TFPreTrainedModel): ...@@ -812,24 +810,6 @@ class TFRemBertPreTrainedModel(TFPreTrainedModel):
config_class = RemBertConfig config_class = RemBertConfig
base_model_prefix = "rembert" base_model_prefix = "rembert"
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
dummy = {"input_ids": tf.constant(DUMMY_INPUTS, dtype=tf.int32)}
# Add `encoder_hidden_states` to make the cross-attention layers' weights initialized
if self.config.add_cross_attention:
batch_size, seq_len = tf.constant(DUMMY_INPUTS).shape
shape = (batch_size, seq_len) + (self.config.hidden_size,)
h = tf.random.uniform(shape=shape)
dummy["encoder_hidden_states"] = h
return dummy
REMBERT_START_DOCSTRING = r""" REMBERT_START_DOCSTRING = r"""
...@@ -1002,27 +982,6 @@ class TFRemBertModel(TFRemBertPreTrainedModel): ...@@ -1002,27 +982,6 @@ class TFRemBertModel(TFRemBertPreTrainedModel):
return outputs return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertModel.serving_output
def serving_output(
self, output: TFBaseModelOutputWithPoolingAndCrossAttentions
) -> TFBaseModelOutputWithPoolingAndCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
cross_attentions=cross_attns,
)
@add_start_docstrings("""RemBERT Model with a `language modeling` head on top.""", REMBERT_START_DOCSTRING) @add_start_docstrings("""RemBERT Model with a `language modeling` head on top.""", REMBERT_START_DOCSTRING)
class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLoss): class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLoss):
...@@ -1095,12 +1054,6 @@ class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLos ...@@ -1095,12 +1054,6 @@ class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLos
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
"""RemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", REMBERT_START_DOCSTRING """RemBERT Model with a `language modeling` head on top for CLM fine-tuning.""", REMBERT_START_DOCSTRING
...@@ -1217,20 +1170,6 @@ class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLos ...@@ -1217,20 +1170,6 @@ class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLos
cross_attentions=outputs.cross_attentions, cross_attentions=outputs.cross_attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.serving_output
def serving_output(self, output: TFCausalLMOutputWithCrossAttentions) -> TFCausalLMOutputWithCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFCausalLMOutputWithCrossAttentions(
logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns, cross_attentions=cross_attns
)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1307,12 +1246,6 @@ class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceCla ...@@ -1307,12 +1246,6 @@ class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceCla
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1331,16 +1264,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss) ...@@ -1331,16 +1264,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss)
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
) )
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32)}
@unpack_inputs @unpack_inputs
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
...@@ -1419,26 +1342,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss) ...@@ -1419,26 +1342,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss)
attentions=outputs.attentions, attentions=outputs.attentions,
) )
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
"token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"),
}
]
)
def serving(self, inputs: Dict[str, tf.Tensor]) -> TFMultipleChoiceModelOutput:
output = self.call(input_ids=inputs)
return self.serving_output(output)
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1512,12 +1415,6 @@ class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassific ...@@ -1512,12 +1415,6 @@ class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassific
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1604,11 +1501,3 @@ class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnswerin ...@@ -1604,11 +1501,3 @@ class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnswerin
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns
)
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
""" TensorFlow ResNet model.""" """ TensorFlow ResNet model."""
from typing import Dict, Optional, Tuple, Union from typing import Optional, Tuple, Union
import tensorflow as tf import tensorflow as tf
...@@ -276,24 +276,8 @@ class TFResNetPreTrainedModel(TFPreTrainedModel): ...@@ -276,24 +276,8 @@ class TFResNetPreTrainedModel(TFPreTrainedModel):
main_input_name = "pixel_values" main_input_name = "pixel_values"
@property @property
def dummy_inputs(self) -> Dict[str, tf.Tensor]: def input_signature(self):
""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)}
Dummy inputs to build the network. Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
VISION_DUMMY_INPUTS = tf.random.uniform(shape=(3, self.config.num_channels, 224, 224), dtype=tf.float32)
return {"pixel_values": tf.constant(VISION_DUMMY_INPUTS)}
@tf.function(
input_signature=[
{
"pixel_values": tf.TensorSpec((None, None, None, None), tf.float32, name="pixel_values"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
RESNET_START_DOCSTRING = r""" RESNET_START_DOCSTRING = r"""
...@@ -419,16 +403,6 @@ class TFResNetModel(TFResNetPreTrainedModel): ...@@ -419,16 +403,6 @@ class TFResNetModel(TFResNetPreTrainedModel):
) )
return resnet_outputs return resnet_outputs
def serving_output(
self, output: TFBaseModelOutputWithPoolingAndNoAttention
) -> TFBaseModelOutputWithPoolingAndNoAttention:
# hidden_states not converted to Tensor with tf.convert_to_tensor as they are all of different dimensions
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
hidden_states=output.hidden_states,
)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -492,7 +466,3 @@ class TFResNetForImageClassification(TFResNetPreTrainedModel, TFSequenceClassifi ...@@ -492,7 +466,3 @@ class TFResNetForImageClassification(TFResNetPreTrainedModel, TFSequenceClassifi
return (loss,) + output if loss is not None else output return (loss,) + output if loss is not None else output
return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
def serving_output(self, output: TFImageClassifierOutputWithNoAttention) -> TFImageClassifierOutputWithNoAttention:
# hidden_states not converted to Tensor with tf.convert_to_tensor as they are all of different dimensions
return TFImageClassifierOutputWithNoAttention(logits=output.logits, hidden_states=output.hidden_states)
...@@ -51,8 +51,6 @@ from ...modeling_tf_utils import ( ...@@ -51,8 +51,6 @@ from ...modeling_tf_utils import (
) )
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import ( from ...utils import (
DUMMY_INPUTS,
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
...@@ -777,38 +775,6 @@ class TFRobertaPreTrainedModel(TFPreTrainedModel): ...@@ -777,38 +775,6 @@ class TFRobertaPreTrainedModel(TFPreTrainedModel):
config_class = RobertaConfig config_class = RobertaConfig
base_model_prefix = "roberta" base_model_prefix = "roberta"
@property
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainedModel.dummy_inputs
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
dummy = {"input_ids": tf.constant(DUMMY_INPUTS, dtype=tf.int32)}
# Add `encoder_hidden_states` to make the cross-attention layers' weights initialized
if self.config.add_cross_attention:
batch_size, seq_len = tf.constant(DUMMY_INPUTS).shape
shape = (batch_size, seq_len) + (self.config.hidden_size,)
h = tf.random.uniform(shape=shape)
dummy["encoder_hidden_states"] = h
return dummy
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
ROBERTA_START_DOCSTRING = r""" ROBERTA_START_DOCSTRING = r"""
...@@ -980,27 +946,6 @@ class TFRobertaModel(TFRobertaPreTrainedModel): ...@@ -980,27 +946,6 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
return outputs return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertModel.serving_output
def serving_output(
self, output: TFBaseModelOutputWithPoolingAndCrossAttentions
) -> TFBaseModelOutputWithPoolingAndCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
cross_attentions=cross_attns,
)
class TFRobertaLMHead(tf.keras.layers.Layer): class TFRobertaLMHead(tf.keras.layers.Layer):
"""Roberta Head for masked language modeling.""" """Roberta Head for masked language modeling."""
...@@ -1131,13 +1076,6 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos ...@@ -1131,13 +1076,6 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLoss): class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
...@@ -1260,20 +1198,6 @@ class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLos ...@@ -1260,20 +1198,6 @@ class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLos
cross_attentions=outputs.cross_attentions, cross_attentions=outputs.cross_attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.serving_output
def serving_output(self, output: TFCausalLMOutputWithCrossAttentions) -> TFCausalLMOutputWithCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFCausalLMOutputWithCrossAttentions(
logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns, cross_attentions=cross_attns
)
class TFRobertaClassificationHead(tf.keras.layers.Layer): class TFRobertaClassificationHead(tf.keras.layers.Layer):
"""Head for sentence-level classification tasks.""" """Head for sentence-level classification tasks."""
...@@ -1378,13 +1302,6 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla ...@@ -1378,13 +1302,6 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1407,16 +1324,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss) ...@@ -1407,16 +1324,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
) )
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32)}
@unpack_inputs @unpack_inputs
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
...@@ -1485,26 +1392,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss) ...@@ -1485,26 +1392,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
attentions=outputs.attentions, attentions=outputs.attentions,
) )
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1588,13 +1475,6 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific ...@@ -1588,13 +1475,6 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1686,12 +1566,3 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin ...@@ -1686,12 +1566,3 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns
)
...@@ -51,8 +51,6 @@ from ...modeling_tf_utils import ( ...@@ -51,8 +51,6 @@ from ...modeling_tf_utils import (
) )
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import ( from ...utils import (
DUMMY_INPUTS,
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
...@@ -778,38 +776,6 @@ class TFRobertaPreLayerNormPreTrainedModel(TFPreTrainedModel): ...@@ -778,38 +776,6 @@ class TFRobertaPreLayerNormPreTrainedModel(TFPreTrainedModel):
config_class = RobertaPreLayerNormConfig config_class = RobertaPreLayerNormConfig
base_model_prefix = "roberta_prelayernorm" base_model_prefix = "roberta_prelayernorm"
@property
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainedModel.dummy_inputs
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
dummy = {"input_ids": tf.constant(DUMMY_INPUTS, dtype=tf.int32)}
# Add `encoder_hidden_states` to make the cross-attention layers' weights initialized
if self.config.add_cross_attention:
batch_size, seq_len = tf.constant(DUMMY_INPUTS).shape
shape = (batch_size, seq_len) + (self.config.hidden_size,)
h = tf.random.uniform(shape=shape)
dummy["encoder_hidden_states"] = h
return dummy
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
ROBERTA_PRELAYERNORM_START_DOCSTRING = r""" ROBERTA_PRELAYERNORM_START_DOCSTRING = r"""
...@@ -982,27 +948,6 @@ class TFRobertaPreLayerNormModel(TFRobertaPreLayerNormPreTrainedModel): ...@@ -982,27 +948,6 @@ class TFRobertaPreLayerNormModel(TFRobertaPreLayerNormPreTrainedModel):
return outputs return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertModel.serving_output
def serving_output(
self, output: TFBaseModelOutputWithPoolingAndCrossAttentions
) -> TFBaseModelOutputWithPoolingAndCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
cross_attentions=cross_attns,
)
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->RobertaPreLayerNorm # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->RobertaPreLayerNorm
class TFRobertaPreLayerNormLMHead(tf.keras.layers.Layer): class TFRobertaPreLayerNormLMHead(tf.keras.layers.Layer):
...@@ -1140,13 +1085,6 @@ class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFM ...@@ -1140,13 +1085,6 @@ class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFM
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
class TFRobertaPreLayerNormForCausalLM(TFRobertaPreLayerNormPreTrainedModel, TFCausalLanguageModelingLoss): class TFRobertaPreLayerNormForCausalLM(TFRobertaPreLayerNormPreTrainedModel, TFCausalLanguageModelingLoss):
...@@ -1276,20 +1214,6 @@ class TFRobertaPreLayerNormForCausalLM(TFRobertaPreLayerNormPreTrainedModel, TFC ...@@ -1276,20 +1214,6 @@ class TFRobertaPreLayerNormForCausalLM(TFRobertaPreLayerNormPreTrainedModel, TFC
cross_attentions=outputs.cross_attentions, cross_attentions=outputs.cross_attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.serving_output
def serving_output(self, output: TFCausalLMOutputWithCrossAttentions) -> TFCausalLMOutputWithCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFCausalLMOutputWithCrossAttentions(
logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns, cross_attentions=cross_attns
)
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->RobertaPreLayerNorm # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->RobertaPreLayerNorm
class TFRobertaPreLayerNormClassificationHead(tf.keras.layers.Layer): class TFRobertaPreLayerNormClassificationHead(tf.keras.layers.Layer):
...@@ -1398,13 +1322,6 @@ class TFRobertaPreLayerNormForSequenceClassification( ...@@ -1398,13 +1322,6 @@ class TFRobertaPreLayerNormForSequenceClassification(
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1428,16 +1345,6 @@ class TFRobertaPreLayerNormForMultipleChoice(TFRobertaPreLayerNormPreTrainedMode ...@@ -1428,16 +1345,6 @@ class TFRobertaPreLayerNormForMultipleChoice(TFRobertaPreLayerNormPreTrainedMode
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
) )
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32)}
@unpack_inputs @unpack_inputs
@add_start_docstrings_to_model_forward( @add_start_docstrings_to_model_forward(
ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ROBERTA_PRELAYERNORM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
...@@ -1508,26 +1415,6 @@ class TFRobertaPreLayerNormForMultipleChoice(TFRobertaPreLayerNormPreTrainedMode ...@@ -1508,26 +1415,6 @@ class TFRobertaPreLayerNormForMultipleChoice(TFRobertaPreLayerNormPreTrainedMode
attentions=outputs.attentions, attentions=outputs.attentions,
) )
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1612,13 +1499,6 @@ class TFRobertaPreLayerNormForTokenClassification(TFRobertaPreLayerNormPreTraine ...@@ -1612,13 +1499,6 @@ class TFRobertaPreLayerNormForTokenClassification(TFRobertaPreLayerNormPreTraine
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1711,12 +1591,3 @@ class TFRobertaPreLayerNormForQuestionAnswering(TFRobertaPreLayerNormPreTrainedM ...@@ -1711,12 +1591,3 @@ class TFRobertaPreLayerNormForQuestionAnswering(TFRobertaPreLayerNormPreTrainedM
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
attentions=outputs.attentions, attentions=outputs.attentions,
) )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns
)
...@@ -50,7 +50,6 @@ from ...modeling_tf_utils import ( ...@@ -50,7 +50,6 @@ from ...modeling_tf_utils import (
) )
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import ( from ...utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
...@@ -835,12 +834,6 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel): ...@@ -835,12 +834,6 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel):
return outputs return outputs
def serving_output(self, output: TFBaseModelOutput) -> TFBaseModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns)
@add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING) @add_start_docstrings("""RoFormer Model with a `language modeling` head on top.""", ROFORMER_START_DOCSTRING)
class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingLoss): class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingLoss):
...@@ -911,12 +904,6 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL ...@@ -911,12 +904,6 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
"""RoFormer Model with a `language modeling` head on top for CLM fine-tuning.""", ROFORMER_START_DOCSTRING """RoFormer Model with a `language modeling` head on top for CLM fine-tuning.""", ROFORMER_START_DOCSTRING
...@@ -990,12 +977,6 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL ...@@ -990,12 +977,6 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFCausalLMOutput) -> TFCausalLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFCausalLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
class TFRoFormerClassificationHead(tf.keras.layers.Layer): class TFRoFormerClassificationHead(tf.keras.layers.Layer):
"""Head for sentence-level classification tasks.""" """Head for sentence-level classification tasks."""
...@@ -1094,12 +1075,6 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC ...@@ -1094,12 +1075,6 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1118,17 +1093,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos ...@@ -1118,17 +1093,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
) )
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32)}
@unpack_inputs @unpack_inputs
@add_start_docstrings_to_model_forward( @add_start_docstrings_to_model_forward(
ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ROFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
...@@ -1203,26 +1167,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos ...@@ -1203,26 +1167,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos
attentions=outputs.attentions, attentions=outputs.attentions,
) )
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
"token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"),
}
]
)
def serving(self, inputs: Dict[str, tf.Tensor]) -> TFMultipleChoiceModelOutput:
output = self.call(input_ids=inputs)
return self.serving_output(output)
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1294,12 +1238,6 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif ...@@ -1294,12 +1238,6 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1383,11 +1321,3 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer ...@@ -1383,11 +1321,3 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns
)
...@@ -486,18 +486,13 @@ class TFWhisperPreTrainedModel(TFPreTrainedModel): ...@@ -486,18 +486,13 @@ class TFWhisperPreTrainedModel(TFPreTrainedModel):
"decoder_input_ids": tf.constant([[2, 3]], dtype=tf.int32), "decoder_input_ids": tf.constant([[2, 3]], dtype=tf.int32),
} }
@tf.function( @property
input_signature=[ def input_signature(self):
{ return {
"input_features": tf.TensorSpec((None, None, None), tf.float32, name="input_features"), "input_features": tf.TensorSpec((None, self.config.num_mel_bins, None), tf.float32, name="input_features"),
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
} }
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
WHISPER_START_DOCSTRING = r""" WHISPER_START_DOCSTRING = r"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment