Commit 81422c4e authored by Aymeric Augustin's avatar Aymeric Augustin
Browse files

Remove unused variables in examples.

parent 072750f4
...@@ -44,13 +44,10 @@ from transformers import ( ...@@ -44,13 +44,10 @@ from transformers import (
AdamW, AdamW,
OpenAIGPTDoubleHeadsModel, OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer, OpenAIGPTTokenizer,
cached_path,
get_linear_schedule_with_warmup, get_linear_schedule_with_warmup,
) )
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
logging.basicConfig( logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
) )
...@@ -182,9 +179,6 @@ def main(): ...@@ -182,9 +179,6 @@ def main():
model.to(device) model.to(device)
# Load and encode the datasets # Load and encode the datasets
if not args.train_dataset and not args.eval_dataset:
roc_stories = cached_path(ROCSTORIES_URL)
def tokenize_and_encode(obj): def tokenize_and_encode(obj):
""" Tokenize and encode a nested object """ """ Tokenize and encode a nested object """
if isinstance(obj, str): if isinstance(obj, str):
......
...@@ -28,7 +28,7 @@ import time ...@@ -28,7 +28,7 @@ import time
import torch import torch
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel, TransfoXLTokenizer from transformers import TransfoXLCorpus, TransfoXLLMHeadModel
logging.basicConfig( logging.basicConfig(
...@@ -73,9 +73,7 @@ def main(): ...@@ -73,9 +73,7 @@ def main():
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax # The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset # and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script ) # The pre-processed corpus is a convertion (using the conversion script )
tokenizer = TransfoXLTokenizer.from_pretrained(args.model_name)
corpus = TransfoXLCorpus.from_pretrained(args.model_name) corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab)
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
......
...@@ -141,7 +141,7 @@ def train(args, train_dataset, model, tokenizer): ...@@ -141,7 +141,7 @@ def train(args, train_dataset, model, tokenizer):
global_step = 0 global_step = 0
tr_loss, logging_loss = 0.0, 0.0 tr_loss, logging_loss = 0.0, 0.0
best_dev_acc, best_dev_loss = 0.0, 99999999999.0 best_dev_acc = 0.0
best_steps = 0 best_steps = 0
model.zero_grad() model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
...@@ -193,7 +193,6 @@ def train(args, train_dataset, model, tokenizer): ...@@ -193,7 +193,6 @@ def train(args, train_dataset, model, tokenizer):
tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("eval_{}".format(key), value, global_step)
if results["eval_acc"] > best_dev_acc: if results["eval_acc"] > best_dev_acc:
best_dev_acc = results["eval_acc"] best_dev_acc = results["eval_acc"]
best_dev_loss = results["eval_loss"]
best_steps = global_step best_steps = global_step
if args.do_test: if args.do_test:
results_test = evaluate(args, model, tokenizer, test=True) results_test = evaluate(args, model, tokenizer, test=True)
......
...@@ -446,8 +446,6 @@ class MultiHeadedAttention(nn.Module): ...@@ -446,8 +446,6 @@ class MultiHeadedAttention(nn.Module):
batch_size = key.size(0) batch_size = key.size(0)
dim_per_head = self.dim_per_head dim_per_head = self.dim_per_head
head_count = self.head_count head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
def shape(x): def shape(x):
""" projection """ """ projection """
...@@ -504,9 +502,6 @@ class MultiHeadedAttention(nn.Module): ...@@ -504,9 +502,6 @@ class MultiHeadedAttention(nn.Module):
query = shape(query) query = shape(query)
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores. # 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head) query = query / math.sqrt(dim_per_head)
scores = torch.matmul(query, key.transpose(2, 3)) scores = torch.matmul(query, key.transpose(2, 3))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment