Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
7f00a36e
Commit
7f00a36e
authored
Jun 19, 2019
by
thomwolf
Browse files
pruning should keep on device
parent
e4b46d86
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
2 additions
and
2 deletions
+2
-2
pytorch_pretrained_bert/modeling.py
pytorch_pretrained_bert/modeling.py
+1
-1
pytorch_pretrained_bert/modeling_gpt2.py
pytorch_pretrained_bert/modeling_gpt2.py
+1
-1
No files found.
pytorch_pretrained_bert/modeling.py
View file @
7f00a36e
...
@@ -80,7 +80,7 @@ def prune_linear_layer(layer, index, dim=0):
...
@@ -80,7 +80,7 @@ def prune_linear_layer(layer, index, dim=0):
b
=
layer
.
bias
[
index
].
clone
().
detach
()
b
=
layer
.
bias
[
index
].
clone
().
detach
()
new_size
=
list
(
layer
.
weight
.
size
())
new_size
=
list
(
layer
.
weight
.
size
())
new_size
[
dim
]
=
len
(
index
)
new_size
[
dim
]
=
len
(
index
)
new_layer
=
nn
.
Linear
(
new_size
[
1
],
new_size
[
0
],
bias
=
layer
.
bias
is
not
None
)
new_layer
=
nn
.
Linear
(
new_size
[
1
],
new_size
[
0
],
bias
=
layer
.
bias
is
not
None
)
.
to
(
layer
.
weight
.
device
)
new_layer
.
weight
.
requires_grad
=
False
new_layer
.
weight
.
requires_grad
=
False
new_layer
.
weight
.
copy_
(
W
.
contiguous
())
new_layer
.
weight
.
copy_
(
W
.
contiguous
())
new_layer
.
weight
.
requires_grad
=
True
new_layer
.
weight
.
requires_grad
=
True
...
...
pytorch_pretrained_bert/modeling_gpt2.py
View file @
7f00a36e
...
@@ -55,7 +55,7 @@ def prune_conv1d_layer(layer, index, dim=1):
...
@@ -55,7 +55,7 @@ def prune_conv1d_layer(layer, index, dim=1):
b
=
layer
.
bias
[
index
].
clone
().
detach
()
b
=
layer
.
bias
[
index
].
clone
().
detach
()
new_size
=
list
(
layer
.
weight
.
size
())
new_size
=
list
(
layer
.
weight
.
size
())
new_size
[
dim
]
=
len
(
index
)
new_size
[
dim
]
=
len
(
index
)
new_layer
=
Conv1D
(
new_size
[
1
],
new_size
[
0
])
new_layer
=
Conv1D
(
new_size
[
1
],
new_size
[
0
])
.
to
(
layer
.
weight
.
device
)
new_layer
.
weight
.
requires_grad
=
False
new_layer
.
weight
.
requires_grad
=
False
new_layer
.
weight
.
copy_
(
W
.
contiguous
())
new_layer
.
weight
.
copy_
(
W
.
contiguous
())
new_layer
.
weight
.
requires_grad
=
True
new_layer
.
weight
.
requires_grad
=
True
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment