Unverified Commit 7ea9b2db authored by Andrés Felipe Cruz's avatar Andrés Felipe Cruz Committed by GitHub
Browse files

Encoder decoder config docs (#6195)



* Adding docs for how to load encoder_decoder pretrained model with individual config objects

* Adding docs for loading encoder_decoder config from pretrained folder

* Fixing  W293 blank line contains whitespace

* Update src/transformers/modeling_encoder_decoder.py

* Update src/transformers/modeling_encoder_decoder.py

* Update src/transformers/modeling_encoder_decoder.py

* Apply suggestions from code review

model file should only show examples for how to load save model

* Update src/transformers/configuration_encoder_decoder.py

* Update src/transformers/configuration_encoder_decoder.py

* fix space
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 1d5c3a3d
...@@ -56,6 +56,15 @@ class EncoderDecoderConfig(PretrainedConfig): ...@@ -56,6 +56,15 @@ class EncoderDecoderConfig(PretrainedConfig):
>>> # Accessing the model configuration >>> # Accessing the model configuration
>>> config_encoder = model.config.encoder >>> config_encoder = model.config.encoder
>>> config_decoder = model.config.decoder >>> config_decoder = model.config.decoder
>>> # set decoder config to causal lm
>>> config_decoder.is_decoder = True
>>> # Saving the model, including its configuration
>>> model.save_pretrained('my-model')
>>> # loading model and config from pretrained folder
>>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained('my-model')
>>> model = EncoderDecoderModel.from_pretrained('my-model', config=encoder_decoder_config)
""" """
model_type = "encoder_decoder" model_type = "encoder_decoder"
......
...@@ -127,7 +127,13 @@ class EncoderDecoderModel(PreTrainedModel): ...@@ -127,7 +127,13 @@ class EncoderDecoderModel(PreTrainedModel):
Examples:: Examples::
>>> from transformers import EncoderDecoderModel >>> from transformers import EncoderDecoderModel
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased')
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2bert")
>>> # load fine-tuned model
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
""" """
kwargs_encoder = { kwargs_encoder = {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment