Unverified Commit 7c59e32d authored by Matt's avatar Matt Committed by GitHub
Browse files

Merge pull request #2 from huggingface/master

Updating my fork to the latest version
parents b8e2a9c5 c304593d
......@@ -7,9 +7,11 @@ jobs:
steps:
- checkout
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest ftfy spacy
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install spacy ftfy==4.4.3
- run: sudo python -m spacy download en
- run: python -m pytest -sv tests/ --runslow
- run: python -m pytest -sv tests/ --cov
- run: codecov
build_py2:
working_directory: ~/pytorch-pretrained-BERT
docker:
......@@ -17,10 +19,11 @@ jobs:
steps:
- checkout
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest spacy
- run: sudo pip install ftfy==4.4.3
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install spacy ftfy==4.4.3
- run: sudo python -m spacy download en
- run: python -m pytest -sv tests/ --runslow
- run: python -m pytest -sv tests/ --cov
- run: codecov
workflows:
version: 2
build_and_test:
......
[run]
source=pytorch_pretrained_bert
[report]
exclude_lines =
pragma: no cover
raise
except
register_parameter
\ No newline at end of file
This diff is collapsed.
#!/usr/bin/env python3
import os
import argparse
import logging
from datetime import timedelta, datetime
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from pytorch_pretrained_bert import BertForSequenceClassification, BertTokenizer
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics
logger = logging.getLogger(__name__)
def entropy(p):
plogp = p * torch.log(p)
plogp[p == 0] = 0
return -plogp.sum(dim=-1)
def print_1d_tensor(tensor, prefix=""):
if tensor.dtype != torch.long:
logger.info(prefix + "\t".join(f"{x:.5f}" for x in tensor.cpu().data))
else:
logger.info(prefix + "\t".join(f"{x:d}" for x in tensor.cpu().data))
def print_2d_tensor(tensor):
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)):
print_1d_tensor(tensor[row], prefix=f"layer {row + 1}:\t")
def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None):
""" Example on how to use model outputs to compute:
- head attention entropy (activated by setting output_attentions=True when we created the model
- head importance scores according to http://arxiv.org/abs/1905.10650
(activated by setting keep_multihead_output=True when we created the model)
"""
# Prepare our tensors
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
preds = None
labels = None
tot_tokens = 0.0
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
all_attentions, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, head_mask=head_mask)
if compute_entropy:
# Update head attention entropy
for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
if compute_importance:
# Update head importance scores with regards to our loss
# First, backpropagate to populate the gradients
if args.output_mode == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, args.num_labels), label_ids.view(-1))
elif args.output_mode == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
loss.backward()
# Second, compute importance scores according to http://arxiv.org/abs/1905.10650
multihead_outputs = model.bert.get_multihead_outputs()
for layer, mh_layer_output in enumerate(multihead_outputs):
dot = torch.einsum("bhli,bhli->bhl", [mh_layer_output.grad, mh_layer_output])
head_importance[layer] += dot.abs().sum(-1).sum(0).detach()
# Also store our logits/labels if we want to compute metrics afterwards
if preds is None:
preds = logits.detach().cpu().numpy()
labels = label_ids.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
labels = np.append(labels, label_ids.detach().cpu().numpy(), axis=0)
tot_tokens += input_mask.float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
exponent = 2
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1/exponent)
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
if not args.dont_normalize_global_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
return attn_entropy, head_importance, preds, labels
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='bert-base-cased-finetuned-mrpc', help='pretrained model name or path to local checkpoint')
parser.add_argument("--task_name", type=str, default='mrpc', help="The name of the task to train.")
parser.add_argument("--data_dir", type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--output_dir", type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances.")
parser.add_argument("--overwrite_output_dir", action='store_true', help="Whether to overwrite data in output directory")
parser.add_argument("--dont_normalize_importance_by_layer", action='store_true', help="Don't normalize importance score by layers")
parser.add_argument("--dont_normalize_global_importance", action='store_true', help="Don't normalize all importance scores between 0 and 1")
parser.add_argument("--try_masking", action='store_true', help="Whether to try to mask head until a threshold of accuracy.")
parser.add_argument("--masking_threshold", default=0.9, type=float, help="masking threshold in term of metrics"
"(stop masking when metric < threshold * original metric value).")
parser.add_argument("--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step.")
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
n_gpu = 1
torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend
# Setup logging
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, n_gpu, bool(args.local_rank != -1)))
# Set seeds
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed(args.seed)
# Prepare GLUE task
task_name = args.task_name.lower()
processor = processors[task_name]()
label_list = processor.get_labels()
args.output_mode = output_modes[task_name]
args.num_labels = len(label_list)
# Prepare output directory
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
# Load model & tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
# Load a model with all BERTology options on:
# output_attentions => will output attention weights
# keep_multihead_output => will store gradient of attention head outputs for head importance computation
# see: http://arxiv.org/abs/1905.10650
model = BertForSequenceClassification.from_pretrained(args.model_name_or_path,
num_labels=args.num_labels,
output_attentions=True,
keep_multihead_output=True)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
model.eval()
# Prepare dataset for the GLUE task
eval_examples = processor.get_dev_examples(args.data_dir)
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task_name)))
try:
eval_features = torch.load(cached_eval_features_file)
except:
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, args.output_mode)
if args.local_rank in [-1, 0]:
logger.info("Saving eval features to cache file %s", cached_eval_features_file)
torch.save(eval_features, cached_eval_features_file)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long if args.output_mode == "classification" else torch.float)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(min(args.data_subset, len(eval_data)))))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
# Print/save training arguments
print(args)
torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
# Compute head entropy and importance score
attn_entropy, head_importance, _, _ = compute_heads_importance(args, model, eval_dataloader)
# Print/save matrices
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy.detach().cpu().numpy())
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance.detach().cpu().numpy())
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel(), device=args.device)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
# Do masking if we want to
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
original_score = compute_metrics(task_name, preds, labels)[args.metric_name]
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float('Inf')
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
current_score = compute_metrics(task_name, preds, labels)[args.metric_name]
logger.info("Masking: current score: %f, remaning heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum()/new_head_mask.numel() * 100)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, 'head_mask.npy'), head_mask.detach().cpu().numpy())
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=head_mask)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_masking = compute_metrics(task_name, preds, labels)[args.metric_name]
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = dict((layer, (1 - head_mask[layer].long()).nonzero().tolist()) for layer in range(len(head_mask)))
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.bert.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, preds, labels = compute_heads_importance(args, model, eval_dataloader,
compute_entropy=False, compute_importance=False, head_mask=None)
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds)
score_pruning = compute_metrics(task_name, preds, labels)[args.metric_name]
new_time = datetime.now() - before_time
logger.info("Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params/original_num_params * 100)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time/new_time * 100)
if __name__ == '__main__':
run_model()
from argparse import ArgumentParser
from pathlib import Path
import os
import torch
import logging
import json
......@@ -12,9 +13,10 @@ from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from pytorch_pretrained_bert import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
......@@ -268,7 +270,8 @@ def main():
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
......@@ -314,8 +317,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps,
args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......@@ -325,8 +327,13 @@ def main():
# Save a trained model
logging.info("** ** * Saving fine-tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = args.output_dir / "pytorch_model.bin"
torch.save(model_to_save.state_dict(), str(output_model_file))
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
if __name__ == '__main__':
......
......@@ -4,11 +4,11 @@ from tqdm import tqdm, trange
from tempfile import TemporaryDirectory
import shelve
from random import random, randrange, randint, shuffle, choice, sample
from random import random, randrange, randint, shuffle, choice
from pytorch_pretrained_bert.tokenization import BertTokenizer
import numpy as np
import json
import collections
class DocumentDatabase:
def __init__(self, reduce_memory=False):
......@@ -98,22 +98,53 @@ def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
else:
trunc_tokens.pop()
MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
["index", "label"])
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list):
"""Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
with several refactors to clean it up and remove a lot of unnecessary variables."""
cand_indices = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indices.append(i)
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
if (whole_word_mask and len(cand_indices) >= 1 and token.startswith("##")):
cand_indices[-1].append(i)
else:
cand_indices.append([i])
num_to_mask = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
shuffle(cand_indices)
mask_indices = sorted(sample(cand_indices, num_to_mask))
masked_token_labels = []
for index in mask_indices:
masked_lms = []
covered_indexes = set()
for index_set in cand_indices:
if len(masked_lms) >= num_to_mask:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_mask:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if random() < 0.8:
masked_token = "[MASK]"
......@@ -124,16 +155,20 @@ def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq
# 10% of the time, replace with random word
else:
masked_token = choice(vocab_list)
masked_token_labels.append(tokens[index])
# Once we've saved the true label for that token, we can overwrite it with the masked version
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
tokens[index] = masked_token
assert len(masked_lms) <= num_to_mask
masked_lms = sorted(masked_lms, key=lambda x: x.index)
mask_indices = [p.index for p in masked_lms]
masked_token_labels = [p.label for p in masked_lms]
return tokens, mask_indices, masked_token_labels
def create_instances_from_document(
doc_database, doc_idx, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_list):
masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list):
"""This code is mostly a duplicate of the equivalent function from Google BERT's repo.
However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.
Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence
......@@ -213,7 +248,7 @@ def create_instances_from_document(
segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]
tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_list)
tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list)
instance = {
"tokens": tokens,
......@@ -235,9 +270,10 @@ def main():
parser.add_argument("--output_dir", type=Path, required=True)
parser.add_argument("--bert_model", type=str, required=True,
choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
"bert-base-multilingual", "bert-base-chinese"])
"bert-base-multilingual-uncased", "bert-base-chinese", "bert-base-multilingual-cased"])
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--do_whole_word_mask", action="store_true",
help="Whether to use whole word masking rather than per-WordPiece masking.")
parser.add_argument("--reduce_memory", action="store_true",
help="Reduce memory usage for large datasets by keeping data on disc rather than in memory")
......@@ -284,7 +320,7 @@ def main():
doc_instances = create_instances_from_document(
docs, doc_idx, max_seq_length=args.max_seq_len, short_seq_prob=args.short_seq_prob,
masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq,
vocab_list=vocab_list)
whole_word_mask=args.do_whole_word_mask, vocab_list=vocab_list)
doc_instances = [json.dumps(instance) for instance in doc_instances]
for instance in doc_instances:
epoch_file.write(instance + '\n')
......
......@@ -29,9 +29,10 @@ from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
......@@ -534,6 +535,7 @@ def main():
model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
......@@ -556,6 +558,8 @@ def main():
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
......@@ -601,7 +605,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......@@ -611,9 +615,12 @@ def main():
# Save a trained model
logger.info("** ** * Saving fine - tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
if args.do_train:
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
......
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT classification fine-tuning: utilities to work with GLUE tasks """
from __future__ import absolute_import, division, print_function
import csv
import logging
import os
import sys
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[3]
text_b = line[4]
label = line[0]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
"dev_matched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[8]
text_b = line[9]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class MnliMismatchedProcessor(MnliProcessor):
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
"dev_matched")
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[3]
label = line[1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class Sst2Processor(DataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[0]
label = line[1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class StsbProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return [None]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[7]
text_b = line[8]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class QqpProcessor(DataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
try:
text_a = line[3]
text_b = line[4]
label = line[5]
except IndexError:
continue
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class QnliProcessor(DataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")),
"dev_matched")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class RteProcessor(DataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class WnliProcessor(DataProcessor):
"""Processor for the WNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length,
tokenizer, output_mode):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {label : i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
if tokens_b:
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if output_mode == "classification":
label_id = label_map[example.label]
elif output_mode == "regression":
label_id = float(example.label)
else:
raise KeyError(output_mode)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
}
......@@ -107,7 +107,7 @@ def run_model():
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
if args.unconditional:
else:
generated = 0
for _ in range(args.nsamples // args.batch_size):
out = sample_sequence(
......@@ -124,8 +124,6 @@ def run_model():
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
if args.unconditional:
break
if __name__ == '__main__':
run_model()
......
......@@ -83,8 +83,8 @@ def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, d
input_ids[i, 1, :len(with_cont2)] = with_cont2
mc_token_ids[i, 0] = len(with_cont1) - 1
mc_token_ids[i, 1] = len(with_cont2) - 1
lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
lm_labels[i, 0, :len(with_cont1)] = with_cont1
lm_labels[i, 1, :len(with_cont2)] = with_cont2
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
......@@ -183,13 +183,14 @@ def main():
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare optimizer
if args.do_train:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = len(train_data) * args.num_train_epochs // args.train_batch_size
num_train_optimization_steps = len(train_dataloader) * args.num_train_epochs
optimizer = OpenAIAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
......
This diff is collapsed.
This diff is collapsed.
......@@ -34,7 +34,7 @@ from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForMultipleChoice, BertConfig
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from pytorch_pretrained_bert.tokenization import BertTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
......@@ -358,15 +358,6 @@ def main():
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_optimization_steps = None
if args.do_train:
train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForMultipleChoice.from_pretrained(args.bert_model,
cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)),
......@@ -384,12 +375,35 @@ def main():
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.do_train:
# Prepare data loader
train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
train_features = convert_examples_to_features(
train_examples, tokenizer, args.max_seq_length, True)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
param_optimizer = [n for n in param_optimizer]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
......@@ -411,6 +425,8 @@ def main():
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
......@@ -418,23 +434,11 @@ def main():
t_total=num_train_optimization_steps)
global_step = 0
if args.do_train:
train_features = convert_examples_to_features(
train_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
......@@ -464,7 +468,7 @@ def main():
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
......@@ -537,7 +541,7 @@ def main():
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
'loss': tr_loss/global_step}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
......
dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex']
from hubconfs.bert_hubconf import (
bertTokenizer,
bertModel,
bertForNextSentencePrediction,
bertForPreTraining,
bertForMaskedLM,
bertForSequenceClassification,
bertForMultipleChoice,
bertForQuestionAnswering,
bertForTokenClassification
)
from hubconfs.gpt_hubconf import (
openAIGPTTokenizer,
openAIGPTModel,
openAIGPTLMHeadModel,
openAIGPTDoubleHeadsModel
)
from hubconfs.gpt2_hubconf import (
gpt2Tokenizer,
gpt2Model,
gpt2LMHeadModel,
gpt2DoubleHeadsModel
)
from hubconfs.transformer_xl_hubconf import (
transformerXLTokenizer,
transformerXLModel,
transformerXLLMHeadModel
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment