Unverified Commit 783d7d26 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Reorganize examples (#9010)



* Reorganize example folder

* Continue reorganization

* Change requirements for tests

* Final cleanup

* Finish regroup with tests all passing

* Copyright

* Requirements and readme

* Make a full link for the documentation

* Address review comments

* Apply suggestions from code review
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Add symlink

* Reorg again

* Apply suggestions from code review
Co-authored-by: default avatarThomas Wolf <thomwolf@users.noreply.github.com>

* Adapt title

* Update to new strucutre

* Remove test

* Update READMEs
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>
Co-authored-by: default avatarThomas Wolf <thomwolf@users.noreply.github.com>
parent 86896de0
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
......
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fire
from torch.utils.data import DataLoader
......
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fire
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from filelock import FileLock
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from dataclasses import dataclass, field
from typing import Optional
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from pathlib import Path
......
seq2seq/test_data
\ No newline at end of file
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
......@@ -8,7 +22,6 @@ from torch.utils.data import DataLoader
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from test_seq2seq_examples import ARTICLES, BART_TINY, MARIAN_TINY, MBART_TINY, SUMMARIES, T5_TINY, make_test_data_dir
from transformers import AutoTokenizer
from transformers.models.bart.modeling_bart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, require_torch_non_multi_gpu_but_fix_me, slow
......@@ -17,6 +30,24 @@ from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDat
BERT_BASE_CASED = "bert-base-cased"
PEGASUS_XSUM = "google/pegasus-xsum"
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
def _dump_articles(path: Path, articles: list):
content = "\n".join(articles)
Path(path).open("w").writelines(content)
def make_test_data_dir(tmp_dir):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
return tmp_dir
class TestAll(TestCasePlus):
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from unittest.mock import patch
......@@ -17,11 +31,11 @@ from transformers.trainer_utils import set_seed
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
from .test_seq2seq_examples import MBART_TINY
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
MBART_TINY = "sshleifer/tiny-mbart"
class TestFinetuneTrainer(TestCasePlus):
......
import argparse
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
from pathlib import Path
from unittest.mock import patch
import pytest
import pytorch_lightning as pl
import torch
import lightning_base
from convert_pl_checkpoint_to_hf import convert_pl_to_hf
from distillation import distill_main
from finetune import SummarizationModule, main
from parameterized import parameterized
from run_eval import generate_summaries_or_translations, run_generate
from run_eval import run_generate
from run_eval_search import run_search
from transformers import AutoConfig, AutoModelForSeq2SeqLM
from transformers.hf_api import HfApi
from transformers.testing_utils import CaptureStderr, CaptureStdout, TestCasePlus, require_torch_gpu, slow
from utils import ROUGE_KEYS, label_smoothed_nll_loss, lmap, load_json
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
"max_tokens_per_batch": None,
"supervise_forward": True,
"normalize_hidden": True,
"label_smoothing": 0.2,
"eval_max_gen_length": None,
"eval_beams": 1,
"val_metric": "loss",
"save_top_k": 1,
"adafactor": True,
"early_stopping_patience": 2,
"logger_name": "default",
"length_penalty": 0.5,
"cache_dir": "",
"task": "summarization",
"num_workers": 2,
"alpha_hid": 0,
"freeze_embeds": True,
"enc_only": False,
"tgt_suffix": "",
"resume_from_checkpoint": None,
"sortish_sampler": True,
"student_decoder_layers": 1,
"val_check_interval": 1.0,
"output_dir": "",
"fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
"no_teacher": False,
"fp16_opt_level": "O1",
"gpus": 1 if CUDA_AVAILABLE else 0,
"n_tpu_cores": 0,
"max_grad_norm": 1.0,
"do_train": True,
"do_predict": True,
"accumulate_grad_batches": 1,
"server_ip": "",
"server_port": "",
"seed": 42,
"model_name_or_path": "sshleifer/bart-tiny-random",
"config_name": "",
"tokenizer_name": "facebook/bart-large",
"do_lower_case": False,
"learning_rate": 0.3,
"lr_scheduler": "linear",
"weight_decay": 0.0,
"adam_epsilon": 1e-08,
"warmup_steps": 0,
"max_epochs": 1,
"train_batch_size": 2,
"eval_batch_size": 2,
"max_source_length": 12,
"max_target_length": 12,
"val_max_target_length": 12,
"test_max_target_length": 12,
"fast_dev_run": False,
"no_cache": False,
"n_train": -1,
"n_val": -1,
"n_test": -1,
"student_encoder_layers": 1,
"freeze_encoder": False,
"auto_scale_batch_size": False,
"overwrite_output_dir": False,
"student": None,
}
def _dump_articles(path: Path, articles: list):
......@@ -98,187 +34,15 @@ def _dump_articles(path: Path, articles: list):
Path(path).open("w").writelines(content)
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
T5_TINIER = "sshleifer/t5-tinier-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
FSMT_TINY = "stas/tiny-wmt19-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
def make_test_data_dir(tmp_dir):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
return tmp_dir
class TestSummarizationDistiller(TestCasePlus):
@classmethod
def setUpClass(cls):
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
return cls
@slow
@require_torch_gpu
def test_hub_configs(self):
"""I put require_torch_gpu cause I only want this to run with self-scheduled."""
model_list = HfApi().model_list()
org = "sshleifer"
model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
failures = []
for m in model_ids:
if m in allowed_to_be_broken:
continue
try:
AutoConfig.from_pretrained(m)
except Exception:
failures.append(m)
assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"
def test_distill_no_teacher(self):
updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
self._test_distiller_cli(updates)
def test_distill_checkpointing_with_teacher(self):
updates = dict(
student_encoder_layers=2,
student_decoder_layers=1,
max_epochs=4,
val_check_interval=0.25,
alpha_hid=2.0,
model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
)
model = self._test_distiller_cli(updates, check_contents=False)
ckpts = list(Path(model.output_dir).glob("*.ckpt"))
self.assertEqual(1, len(ckpts))
transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
self.assertEqual(len(transformer_ckpts), 2)
examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines())
out_path = tempfile.mktemp() # XXX: not being cleaned up
generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
self.assertTrue(Path(out_path).exists())
out_path_new = self.get_auto_remove_tmp_dir()
convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
def test_loss_fn(self):
model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY)
input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
decoder_input_ids = target_ids[:, :-1].contiguous() # Why this line?
lm_labels = target_ids[:, 1:].clone() # why clone?
model_computed_loss = model(
input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
).loss
logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits
lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
smoothed_loss, nll_loss = label_smoothed_nll_loss(
lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
)
with self.assertRaises(AssertionError):
# TODO: understand why this breaks
self.assertEqual(nll_loss, model_computed_loss)
def test_distill_mbart(self):
updates = dict(
student_encoder_layers=2,
student_decoder_layers=1,
num_train_epochs=4,
val_check_interval=0.25,
alpha_hid=2.0,
task="translation",
model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
tokenizer_name=MBART_TINY,
teacher=MBART_TINY,
src_lang="en_XX",
tgt_lang="ro_RO",
)
model = self._test_distiller_cli(updates, check_contents=False)
assert model.model.config.model_type == "mbart"
ckpts = list(Path(model.output_dir).glob("*.ckpt"))
self.assertEqual(1, len(ckpts))
transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
assert len(all_files) > 2
self.assertEqual(len(transformer_ckpts), 2)
def test_distill_t5(self):
updates = dict(
student_encoder_layers=1,
student_decoder_layers=1,
alpha_hid=2.0,
teacher=T5_TINY,
model_name_or_path=T5_TINY,
tokenizer_name=T5_TINY,
)
self._test_distiller_cli(updates)
def test_distill_different_base_models(self):
updates = dict(
teacher=T5_TINY,
student=T5_TINIER,
model_name_or_path=T5_TINIER,
tokenizer_name=T5_TINIER,
)
self._test_distiller_cli(updates)
def _test_distiller_cli(self, updates, check_contents=True):
default_updates = dict(
label_smoothing=0.0,
early_stopping_patience=-1,
train_batch_size=1,
eval_batch_size=2,
max_epochs=2,
alpha_mlm=0.2,
alpha_ce=0.8,
do_predict=True,
model_name_or_path="sshleifer/tinier_bart",
teacher=CHEAP_ARGS["model_name_or_path"],
val_check_interval=0.5,
)
default_updates.update(updates)
args_d: dict = CHEAP_ARGS.copy()
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
model = distill_main(argparse.Namespace(**args_d))
if not check_contents:
return model
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
ckpt_files = [p for p in contents if p.endswith("ckpt")]
assert len(ckpt_files) > 0
self.assertIn("test_generations.txt", contents)
self.assertIn("test_results.txt", contents)
metrics = load_json(model.metrics_save_path)
last_step_stats = metrics["val"][-1]
self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
self.assertEqual(len(metrics["val"]), desired_n_evals)
self.assertEqual(len(metrics["test"]), 1)
return model
class TestTheRest(TestCasePlus):
def run_eval_tester(self, model):
input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source"
......@@ -365,167 +129,3 @@ class TestTheRest(TestCasePlus):
assert w not in cs.out
assert Path(output_file_name).exists()
os.remove(Path(output_file_name))
@parameterized.expand(
[T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY],
)
def test_finetune(self, model):
args_d: dict = CHEAP_ARGS.copy()
task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization"
args_d["label_smoothing"] = 0.1 if task == "translation" else 0
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(
data_dir=tmp_dir,
model_name_or_path=model,
tokenizer_name=None,
train_batch_size=2,
eval_batch_size=2,
output_dir=output_dir,
do_predict=True,
task=task,
src_lang="en_XX",
tgt_lang="ro_RO",
freeze_encoder=True,
freeze_embeds=True,
)
assert "n_train" in args_d
args = argparse.Namespace(**args_d)
module = main(args)
input_embeds = module.model.get_input_embeddings()
assert not input_embeds.weight.requires_grad
if model == T5_TINY:
lm_head = module.model.lm_head
assert not lm_head.weight.requires_grad
assert (lm_head.weight == input_embeds.weight).all().item()
elif model == FSMT_TINY:
fsmt = module.model.model
embed_pos = fsmt.decoder.embed_positions
assert not embed_pos.weight.requires_grad
assert not fsmt.decoder.embed_tokens.weight.requires_grad
# check that embeds are not the same
assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens
else:
bart = module.model.model
embed_pos = bart.decoder.embed_positions
assert not embed_pos.weight.requires_grad
assert not bart.shared.weight.requires_grad
# check that embeds are the same
assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
assert bart.decoder.embed_tokens == bart.shared
example_batch = load_json(module.output_dir / "text_batch.json")
assert isinstance(example_batch, dict)
assert len(example_batch) >= 4
def test_finetune_extra_model_args(self):
args_d: dict = CHEAP_ARGS.copy()
task = "summarization"
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
args_d.update(
data_dir=tmp_dir,
tokenizer_name=None,
train_batch_size=2,
eval_batch_size=2,
do_predict=False,
task=task,
src_lang="en_XX",
tgt_lang="ro_RO",
freeze_encoder=True,
freeze_embeds=True,
)
# test models whose config includes the extra_model_args
model = BART_TINY
output_dir = self.get_auto_remove_tmp_dir()
args_d1 = args_d.copy()
args_d1.update(
model_name_or_path=model,
output_dir=output_dir,
)
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
args_d1[p] = 0.5
args = argparse.Namespace(**args_d1)
model = main(args)
for p in extra_model_params:
assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"
# test models whose config doesn't include the extra_model_args
model = T5_TINY
output_dir = self.get_auto_remove_tmp_dir()
args_d2 = args_d.copy()
args_d2.update(
model_name_or_path=model,
output_dir=output_dir,
)
unsupported_param = "encoder_layerdrop"
args_d2[unsupported_param] = 0.5
args = argparse.Namespace(**args_d2)
with pytest.raises(Exception) as excinfo:
model = main(args)
assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"
def test_finetune_lr_schedulers(self):
args_d: dict = CHEAP_ARGS.copy()
task = "summarization"
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
model = BART_TINY
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(
data_dir=tmp_dir,
model_name_or_path=model,
output_dir=output_dir,
tokenizer_name=None,
train_batch_size=2,
eval_batch_size=2,
do_predict=False,
task=task,
src_lang="en_XX",
tgt_lang="ro_RO",
freeze_encoder=True,
freeze_embeds=True,
)
# emulate finetune.py
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = {"--help": True}
# --help test
with pytest.raises(SystemExit) as excinfo:
with CaptureStdout() as cs:
args = parser.parse_args(args)
assert False, "--help is expected to sys.exit"
assert excinfo.type == SystemExit
expected = lightning_base.arg_to_scheduler_metavar
assert expected in cs.out, "--help is expected to list the supported schedulers"
# --lr_scheduler=non_existing_scheduler test
unsupported_param = "non_existing_scheduler"
args = {f"--lr_scheduler={unsupported_param}"}
with pytest.raises(SystemExit) as excinfo:
with CaptureStderr() as cs:
args = parser.parse_args(args)
assert False, "invalid argument is expected to sys.exit"
assert excinfo.type == SystemExit
expected = f"invalid choice: '{unsupported_param}'"
assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
# --lr_scheduler=existing_scheduler test
supported_param = "cosine"
args_d1 = args_d.copy()
args_d1["lr_scheduler"] = supported_param
args = argparse.Namespace(**args_d1)
model = main(args)
assert (
getattr(model.hparams, "lr_scheduler") == supported_param
), f"lr_scheduler={supported_param} shouldn't fail"
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# as due to their complexity multi-gpu tests could impact other tests, and to aid debug we have those in a separate module.
import os
import sys
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, get_gpu_count, require_torch_gpu, slow
from .test_seq2seq_examples import CHEAP_ARGS, make_test_data_dir
from .utils import load_json
......@@ -21,73 +27,6 @@ class TestSummarizationDistillerMultiGPU(TestCasePlus):
def setUpClass(cls):
return cls
@require_torch_multi_gpu
def test_multi_gpu(self):
updates = dict(
no_teacher=True,
freeze_encoder=True,
gpus=2,
overwrite_output_dir=True,
sortish_sampler=True,
)
self._test_distiller_cli_fork(updates, check_contents=False)
def _test_distiller_cli_fork(self, updates, check_contents=True):
default_updates = dict(
label_smoothing=0.0,
early_stopping_patience=-1,
train_batch_size=1,
eval_batch_size=2,
max_epochs=2,
alpha_mlm=0.2,
alpha_ce=0.8,
do_predict=True,
model_name_or_path="sshleifer/tinier_bart",
teacher=CHEAP_ARGS["model_name_or_path"],
val_check_interval=0.5,
)
default_updates.update(updates)
args_d: dict = CHEAP_ARGS.copy()
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
def convert(k, v):
if k in ["tgt_suffix", "server_ip", "server_port", "out", "n_tpu_cores"]:
return ""
if v is False or v is None:
return ""
if v is True: # or len(str(v))==0:
return f"--{k}"
return f"--{k}={v}"
cli_args = [x for x in (convert(k, v) for k, v in args_d.items()) if len(x)]
cmd = [sys.executable, f"{self.test_file_dir}/distillation.py"] + cli_args
execute_subprocess_async(cmd, env=self.get_env())
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
ckpt_files = [p for p in contents if p.endswith("ckpt")]
assert len(ckpt_files) > 0
self.assertIn("test_generations.txt", contents)
self.assertIn("test_results.txt", contents)
# get the following from the module, (we don't have access to `model` here)
metrics_save_path = os.path.join(output_dir, "metrics.json")
val_metric = "rouge2"
metrics = load_json(metrics_save_path)
# {'test': [{'test_avg_loss': 10.63731575012207, 'test_avg_rouge1': 0.0, 'test_avg_rouge2': 0.0, 'test_avg_rougeL': 0.0, 'test_avg_gen_time': 0.1822289228439331, 'test_avg_gen_len': 142.0, 'step_count': 1}]}
print(metrics)
last_step_stats = metrics["val"][-1]
self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
self.assertIsInstance(last_step_stats[f"val_avg_{val_metric}"], float)
self.assertEqual(len(metrics["test"]), 1)
desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) / 2 + 1)
self.assertEqual(len(metrics["val"]), desired_n_evals)
@slow
@require_torch_gpu
def test_distributed_eval(self):
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export WANDB_PROJECT=distil-marian
export BS=64
export GAS=1
......
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export WANDB_PROJECT=distil-marian
export BS=64
export m=sshleifer/student_marian_en_ro_6_3
......
#!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export WANDB_PROJECT=distilbart-trainer
export BS=32
export GAS=1
export m=sshleifer/student_cnn_12_6
export tok=facebook/bart-large
export MAX_TGT_LEN=142
python finetune.py \
python finetune_trainer.py \
--model_name_or_path $m --tokenizer_name $tok \
--data_dir cnn_dm \
--output_dir distilbart-cnn-12-6 --overwrite_output_dir \
--learning_rate=3e-5 \
--warmup_steps 500 --sortish_sampler \
--fp16 \
--gpus 1 \
--do_train \
--do_predict \
--val_check_interval 0.25 \
--n_val 500 \
--num_train_epochs 2 \
--freeze_encoder --freeze_embeds --data_dir cnn_dm \
--max_target_length 142 --val_max_target_length=142 \
--train_batch_size=$BS --eval_batch_size=$BS --gradient_accumulation_steps=$GAS \
--model_name_or_path sshleifer/student_cnn_12_6 \
--tokenizer_name facebook/bart-large \
--warmup_steps 500 \
--output_dir distilbart-cnn-12-6 \
--gradient_accumulation_steps=1 \
--per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \
--freeze_encoder --freeze_embeds \
--num_train_epochs=2 \
--save_steps 3000 --eval_steps 3000 \
--logging_first_step \
--max_target_length 56 --val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN \
--do_train --do_eval --do_predict \
--evaluation_strategy steps \
--predict_with_generate --sortish_sampler \
"$@"
#!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
python finetune.py \
python finetune_trainer.py \
--model_name_or_path=facebook/mbart-large-cc25 \
--data_dir $ENRO_DIR \
--output_dir mbart_cc25_enro --overwrite_output_dir \
--learning_rate=3e-5 \
--warmup_steps 500 \
--fp16 \
--do_train \
--val_check_interval=0.25 \
--label_smoothing 0.1 \
--adam_eps 1e-06 \
--num_train_epochs 6 --src_lang en_XX --tgt_lang ro_RO \
--data_dir $ENRO_DIR \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--train_batch_size=$BS --eval_batch_size=$BS \
--task translation \
--warmup_steps 500 \
--src_lang en_XX --tgt_lang ro_RO \
--freeze_embeds \
--model_name_or_path=facebook/mbart-large-cc25 \
--per_device_train_batch_size=4 --per_device_eval_batch_size=4 \
--max_source_length 128 --max_target_length 128 \
--val_max_target_length 128 --test_max_target_length 128 \
--sortish_sampler \
--num_train_epochs 6 \
--save_steps 25000 --eval_steps 25000 --logging_steps 1000 \
--do_train --do_eval --do_predict \
--evaluation_strategy steps \
--predict_with_generate --logging_first_step \
--task translation \
"$@"
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import json
import linecache
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment