Unverified Commit 781124b0 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #620 from chrislarson1/convert-back-to-tf

Convert pytorch models back to tensorflow
parents e5fe2bb5 716cc1c4
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Huggingface Pytorch checkpoint to Tensorflow checkpoint."""
import os
import argparse
import torch
import numpy as np
import tensorflow as tf
from pytorch_pretrained_bert.modeling import BertModel
def convert_pytorch_checkpoint_to_tf(model:BertModel, ckpt_dir:str, model_name:str):
"""
:param model:BertModel Pytorch model instance to be converted
:param ckpt_dir: Tensorflow model directory
:param model_name: model name
:return:
Currently supported HF models:
Y BertModel
N BertForMaskedLM
N BertForPreTraining
N BertForMultipleChoice
N BertForNextSentencePrediction
N BertForSequenceClassification
N BertForQuestionAnswering
"""
tensors_to_transopse = (
"dense.weight",
"attention.self.query",
"attention.self.key",
"attention.self.value"
)
var_map = (
('layer.', 'layer_'),
('word_embeddings.weight', 'word_embeddings'),
('position_embeddings.weight', 'position_embeddings'),
('token_type_embeddings.weight', 'token_type_embeddings'),
('.', '/'),
('LayerNorm/weight', 'LayerNorm/gamma'),
('LayerNorm/bias', 'LayerNorm/beta'),
('weight', 'kernel')
)
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
session = tf.Session()
state_dict = model.state_dict()
tf_vars = []
def to_tf_var_name(name:str):
for patt, repl in iter(var_map):
name = name.replace(patt, repl)
return 'bert/{}'.format(name)
def assign_tf_var(tensor:np.ndarray, name:str):
tmp_var = tf.Variable(initial_value=tensor)
tf_var = tf.get_variable(dtype=tmp_var.dtype, shape=tmp_var.shape, name=name)
op = tf.assign(ref=tf_var, value=tmp_var)
session.run(tf.variables_initializer([tmp_var, tf_var]))
session.run(fetches=[op, tf_var])
return tf_var
for var_name in state_dict:
tf_name = to_tf_var_name(var_name)
torch_tensor = state_dict[var_name].numpy()
if any([x in var_name for x in tensors_to_transopse]):
torch_tensor = torch_tensor.T
tf_tensor = assign_tf_var(tensor=torch_tensor, name=tf_name)
tf_vars.append(tf_tensor)
print("{0}{1}initialized".format(tf_name, " " * (60 - len(tf_name))))
saver = tf.train.Saver(tf_vars)
saver.save(session, os.path.join(ckpt_dir, model_name.replace("-", "_") + ".ckpt"))
def main(raw_args=None):
parser = argparse.ArgumentParser()
parser.add_argument("--model_name",
type=str,
required=True,
help="model name e.g. bert-base-uncased")
parser.add_argument("--cache_dir",
type=str,
default=None,
required=False,
help="Directory containing pytorch model")
parser.add_argument("--pytorch_model_path",
type=str,
required=True,
help="/path/to/<pytorch-model-name>.bin")
parser.add_argument("--tf_cache_dir",
type=str,
required=True,
help="Directory in which to save tensorflow model")
args = parser.parse_args(raw_args)
model = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name,
state_dict=torch.load(args.pytorch_model_path),
cache_dir=args.cache_dir
)
convert_pytorch_checkpoint_to_tf(
model=model,
ckpt_dir=args.tf_cache_dir,
model_name=args.model_name
)
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment