"vscode:/vscode.git/clone" did not exist on "24a85cca61fda92b9376fe45da1dcb10c8853066"
Unverified Commit 77b86284 authored by Stas Bekman's avatar Stas Bekman Committed by GitHub
Browse files

[DeepSpeed] restore memory for evaluation (#10114)

* free up memory at the end of train

* rework tests

* consistent formatting

* correction
parent c130e67d
......@@ -24,10 +24,7 @@
"type": "AdamW",
"params": {
"lr": 3e-5,
"betas": [
0.8,
0.999
],
"betas": [0.8, 0.999],
"eps": 1e-8,
"weight_decay": 3e-7
}
......
......@@ -17,8 +17,14 @@ import os
import unittest
from transformers.integrations import is_deepspeed_available
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, require_torch_multi_gpu
from transformers.trainer_callback import TrainerState
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed
......@@ -42,37 +48,45 @@ def require_deepspeed(test_case):
return test_case
@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeed(TestCasePlus):
# XXX: need to do better validation beyond just that the run was successful
def run_quick(self, distributed=None, extra_args_str=None, remove_args_str=None):
output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str, remove_args_str)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
assert "eval_bleu" in first_step_stats
def run_quick_no_train(self, distributed=None, extra_args_str=None):
remove_args_str = "--do_train"
output_dir = self.run_trainer(1, "12", MBART_TINY, 1, distributed, extra_args_str, remove_args_str)
val_metrics = load_json(os.path.join(output_dir, "val_results.json"))
assert "val_bleu" in val_metrics
test_metrics = load_json(os.path.join(output_dir, "test_results.json"))
assert "test_bleu" in test_metrics
@require_torch_multi_gpu
def test_basic(self):
self.run_quick()
def test_basic_distributed(self):
self.run_quick(distributed=True)
@require_torch_multi_gpu
def test_grad_acum(self):
self.run_quick(extra_args_str="--gradient_accumulation_steps 2")
self.run_quick(distributed=True, extra_args_str="--gradient_accumulation_steps 2")
@require_torch_multi_gpu
def test_no_train(self):
def test_do_eval_no_train(self):
# we should not fail if train is skipped
self.run_quick_no_train()
output_dir = self.run_trainer(
eval_steps=1,
max_len=12,
model_name=MBART_TINY,
num_train_epochs=1,
distributed=False,
extra_args_str="--do_eval",
remove_args_str="--do_train",
)
val_metrics = load_json(os.path.join(output_dir, "val_results.json"))
assert "val_bleu" in val_metrics
# XXX: need to do better validation beyond just that the run was successful
def run_quick(self, distributed=True, extra_args_str=None, remove_args_str=None):
output_dir = self.run_trainer(
eval_steps=1,
max_len=12,
model_name=MBART_TINY,
num_train_epochs=1,
distributed=distributed,
extra_args_str=extra_args_str,
remove_args_str=remove_args_str,
)
train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
assert "train_runtime" in train_metrics
def run_trainer(
self,
......@@ -80,7 +94,7 @@ class TestDeepSpeed(TestCasePlus):
max_len: str,
model_name: str,
num_train_epochs: int,
distributed: bool = False,
distributed: bool = True,
extra_args_str: str = None,
remove_args_str: str = None,
):
......@@ -97,18 +111,13 @@ class TestDeepSpeed(TestCasePlus):
--max_target_length {max_len}
--val_max_target_length {max_len}
--do_train
--do_eval
--do_predict
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--learning_rate 3e-3
--warmup_steps 8
--evaluation_strategy steps
--predict_with_generate
--logging_steps 0
--save_steps {str(eval_steps)}
--eval_steps {str(eval_steps)}
--group_by_length
--label_smoothing_factor 0.1
--adafactor
......@@ -116,7 +125,6 @@ class TestDeepSpeed(TestCasePlus):
--tgt_lang ro_RO
--src_lang en_XX
""".split()
# --eval_beams 2
if extra_args_str is not None:
args.extend(extra_args_str.split())
......@@ -126,12 +134,13 @@ class TestDeepSpeed(TestCasePlus):
args = [x for x in args if x not in remove_args]
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
distributed_args = f"""
{self.test_file_dir}/../../seq2seq/finetune_trainer.py
""".split()
cmd = ["deepspeed"] + distributed_args + args + ds_args
script = [f"{self.examples_dir_str}/seq2seq/finetune_trainer.py"]
num_gpus = get_gpu_count() if distributed else 1
launcher = f"deepspeed --num_gpus {num_gpus}".split()
cmd = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join(cmd)); die
# print(" ".join([f"PYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
return output_dir
......@@ -17,6 +17,7 @@ The Trainer class, to easily train a 🤗 Transformers from scratch or finetune
"""
import collections
import gc
import inspect
import math
import os
......@@ -266,8 +267,9 @@ class Trainer:
# postpone switching model to cuda when:
# 1. MP - since we are trying to fit a much bigger than 1 gpu model
# 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway
if not (self.is_model_parallel or args.deepspeed):
# 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
# and we only use deepspeed for training at the moment
if not self.is_model_parallel and not (args.deepspeed and args.do_train):
model = model.to(args.device)
# Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
......@@ -817,7 +819,7 @@ class Trainer:
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), DDP(Deepspeed(Transformers Model)), etc.
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
# Train!
if is_torch_tpu_available():
......@@ -1036,6 +1038,14 @@ class Trainer:
# add remaining tr_loss
self._total_loss_scalar += tr_loss.item()
if self.deepspeed:
# free up any memory that might be useful for eval
self.deepspeed = None
self.optimizer = None
self.lr_scheduler = None
self.model_wrapped = self.model
gc.collect() # force memory release
return TrainOutput(self.state.global_step, self._total_loss_scalar / self.state.global_step, metrics)
def _maybe_log_save_evaluate(self, tr_loss, model, trial, epoch):
......@@ -1593,13 +1603,9 @@ class Trainer:
)
if self.args.deepspeed and not self.args.do_train:
# In the future we probably can run deepspeed for inference too, but this will require
# some thinking about how to best run it - since while it works DeepSpeed wasn't
# designed for inference
# since we have to postpone model.to() till training for DeepSpeed, if there was no
# training, we must put the model on the right device
self.model = self.model.to(self.args.device)
# no harm, but flagging to the user that deepspeed config is ignored for eval
# flagging only for when --do_train wasn't passed as only then it's redundant
logger.info("Detected the deepspeed argument but it will not be used for evaluation")
model = self.model
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment