Commit 770043ee authored by LysandreJik's avatar LysandreJik
Browse files

Sentence-pair tasks handling. Using common tests on RoBERTa. Forced push to fix indentation.

parent cb9db101
...@@ -5,6 +5,7 @@ from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus) ...@@ -5,6 +5,7 @@ from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
from .tokenization_xlm import XLMTokenizer from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_utils import (PreTrainedTokenizer, clean_up_tokenization) from .tokenization_utils import (PreTrainedTokenizer, clean_up_tokenization)
from .modeling_bert import (BertConfig, BertPreTrainedModel, BertModel, BertForPreTraining, from .modeling_bert import (BertConfig, BertPreTrainedModel, BertModel, BertForPreTraining,
...@@ -33,6 +34,8 @@ from .modeling_xlm import (XLMConfig, XLMPreTrainedModel , XLMModel, ...@@ -33,6 +34,8 @@ from .modeling_xlm import (XLMConfig, XLMPreTrainedModel , XLMModel,
XLMWithLMHeadModel, XLMForSequenceClassification, XLMWithLMHeadModel, XLMForSequenceClassification,
XLMForQuestionAnswering, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMForQuestionAnswering, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_MODEL_ARCHIVE_MAP) XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_roberta import (RobertaConfig, RobertaForMaskedLM, RobertaModel,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME, from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
PretrainedConfig, PreTrainedModel, prune_layer, Conv1D) PretrainedConfig, PreTrainedModel, prune_layer, Conv1D)
......
...@@ -23,6 +23,7 @@ import logging ...@@ -23,6 +23,7 @@ import logging
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from pytorch_transformers.modeling_bert import (BertConfig, BertEmbeddings, from pytorch_transformers.modeling_bert import (BertConfig, BertEmbeddings,
BertLayerNorm, BertModel, BertLayerNorm, BertModel,
...@@ -78,7 +79,7 @@ class RobertaModel(BertModel): ...@@ -78,7 +79,7 @@ class RobertaModel(BertModel):
super(RobertaModel, self).__init__(config) super(RobertaModel, self).__init__(config)
self.embeddings = RobertaEmbeddings(config) self.embeddings = RobertaEmbeddings(config)
self.apply(self.init_weights)
class RobertaForMaskedLM(BertPreTrainedModel): class RobertaForMaskedLM(BertPreTrainedModel):
...@@ -95,15 +96,30 @@ class RobertaForMaskedLM(BertPreTrainedModel): ...@@ -95,15 +96,30 @@ class RobertaForMaskedLM(BertPreTrainedModel):
self.roberta = RobertaModel(config) self.roberta = RobertaModel(config)
self.lm_head = RobertaLMHead(config) self.lm_head = RobertaLMHead(config)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None): self.apply(self.init_weights)
self.tie_weights()
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.lm_head.decoder, self.roberta.embeddings.word_embeddings)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None,
head_mask=None):
outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask) attention_mask=attention_mask, head_mask=head_mask)
sequence_output = outputs[0] sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output) prediction_scores = self.lm_head(sequence_output)
outputs = (prediction_scores,) + outputs[2:] outputs = (prediction_scores,) + outputs[2:]
return outputs
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-1)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
outputs = (masked_lm_loss,) + outputs
return outputs
class RobertaLMHead(nn.Module): class RobertaLMHead(nn.Module):
...@@ -114,7 +130,7 @@ class RobertaLMHead(nn.Module): ...@@ -114,7 +130,7 @@ class RobertaLMHead(nn.Module):
self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.weight = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.bias = nn.Parameter(torch.zeros(config.vocab_size))
def forward(self, features, **kwargs): def forward(self, features, **kwargs):
...@@ -123,6 +139,6 @@ class RobertaLMHead(nn.Module): ...@@ -123,6 +139,6 @@ class RobertaLMHead(nn.Module):
x = self.layer_norm(x) x = self.layer_norm(x)
# project back to size of vocabulary with bias # project back to size of vocabulary with bias
x = F.linear(x, self.weight) + self.bias x = self.decoder(x) + self.bias
return x return x
...@@ -12,58 +12,172 @@ ...@@ -12,58 +12,172 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import (absolute_import, division, print_function, from __future__ import absolute_import
unicode_literals) from __future__ import division
from __future__ import print_function
import os
import unittest import unittest
import shutil
import pytest import pytest
import torch
from pytorch_transformers import (RobertaConfig, RobertaModel, RobertaForMaskedLM)
from pytorch_transformers.modeling_roberta import (RobertaForMaskedLM, from pytorch_transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
RobertaModel)
from .modeling_common_test import (CommonTestCases, ConfigTester, ids_tensor)
class RobertaModelTest(unittest.TestCase):
class RobertaModelTest(CommonTestCases.CommonModelTester):
# @pytest.mark.slow
def test_inference_masked_lm(self): all_model_classes = (RobertaForMaskedLM, RobertaModel)
model = RobertaForMaskedLM.from_pretrained('roberta-base')
class RobertaModelTester(object):
input_ids = torch.tensor([[ 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0] def __init__(self,
expected_shape = torch.Size((1, 11, 50265)) parent,
self.assertEqual( batch_size=13,
output.shape, seq_length=7,
expected_shape is_training=True,
) use_input_mask=True,
# compare the actual values for a slice. use_token_type_ids=True,
expected_slice = torch.Tensor( use_labels=True,
[[[33.8843, -4.3107, 22.7779], vocab_size=99,
[ 4.6533, -2.8099, 13.6252], hidden_size=32,
[ 1.8222, -3.6898, 8.8600]]] num_hidden_layers=5,
) num_attention_heads=4,
self.assertTrue( intermediate_size=37,
torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3) hidden_act="gelu",
) hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
# @pytest.mark.slow max_position_embeddings=512,
def test_inference_no_head(self): type_vocab_size=16,
model = RobertaModel.from_pretrained('roberta-base') type_sequence_label_size=2,
initializer_range=0.02,
input_ids = torch.tensor([[ 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) num_labels=3,
output = model(input_ids)[0] num_choices=4,
# compare the actual values for a slice. scope=None,
expected_slice = torch.Tensor( ):
[[[-0.0231, 0.0782, 0.0074], self.parent = parent
[-0.1854, 0.0539, -0.0174], self.batch_size = batch_size
[ 0.0548, 0.0799, 0.1687]]] self.seq_length = seq_length
) self.is_training = is_training
self.assertTrue( self.use_input_mask = use_input_mask
torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3) self.use_token_type_ids = use_token_type_ids
) self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
if __name__ == '__main__': self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size_or_config_json_file=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_and_check_roberta_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels,
token_labels, choice_labels):
model = RobertaModel(config=config)
model.eval()
sequence_output, pooled_output = model(input_ids, token_type_ids, input_mask)
sequence_output, pooled_output = model(input_ids, token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()),
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_roberta_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels,
token_labels, choice_labels):
model = RobertaForMaskedLM(config=config)
model.eval()
loss, prediction_scores = model(input_ids, token_type_ids, input_mask, token_labels)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, token_type_ids, input_mask,
sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = RobertaModelTest.RobertaModelTester(self)
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_roberta_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_roberta_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
for model_name in list(ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = RobertaModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -12,32 +12,45 @@ ...@@ -12,32 +12,45 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import (absolute_import, division, print_function, from __future__ import absolute_import, division, print_function, unicode_literals
unicode_literals)
import os import os
import unittest import unittest
import pytest
import six
from pytorch_transformers.tokenization_roberta import RobertaTokenizer from pytorch_transformers.tokenization_roberta import RobertaTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import create_and_check_tokenizer_commons, TemporaryDirectory
class RobertaTokenizationTest(unittest.TestCase): class RobertaTokenizationTest(unittest.TestCase):
# @pytest.mark.slow
def test_full_tokenizer(self): def test_full_tokenizer(self):
tokenizer = RobertaTokenizer.from_pretrained('roberta-base') """ Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"lo", "low", "er",
"low", "lowest", "newer", "wider", "<unk>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
special_tokens_map = {"unk_token": "<unk>"}
with TemporaryDirectory() as tmpdirname:
vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(vocab_file, "w") as fp:
[fp.write(f"{vocab} {index}\n") for index, vocab in enumerate(vocab_tokens)]
input_text = u"lower newer"
output_text = u"lower<unk>newer"
create_and_check_tokenizer_commons(self, input_text, output_text, RobertaTokenizer, tmpdirname, **special_tokens_map)
tokenizer = RobertaTokenizer(vocab_file, **special_tokens_map)
text = "lower"
bpe_tokens = ["low", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [13, 12, 17]
self.assertListEqual( self.assertListEqual(
tokenizer.encode('Hello world!'), tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
[0, 31414, 232, 328, 2]
)
if six.PY3:
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip'),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]
)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -22,17 +22,17 @@ import re ...@@ -22,17 +22,17 @@ import re
from io import open from io import open
import six import six
from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_gpt2 import GPT2Tokenizer
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = { VOCAB_FILES_NAMES = {
'dict_file': 'dict.txt', 'vocab_file': 'dict.txt',
} }
PRETRAINED_VOCAB_FILES_MAP = { PRETRAINED_VOCAB_FILES_MAP = {
'dict_file': 'vocab_file':
{ {
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt", 'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt", 'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-dict.txt",
...@@ -46,7 +46,6 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { ...@@ -46,7 +46,6 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
'roberta-large-mnli': 512, 'roberta-large-mnli': 512,
} }
SPACE_NORMALIZER = re.compile(r"\s+") SPACE_NORMALIZER = re.compile(r"\s+")
def tokenize_line(line): def tokenize_line(line):
...@@ -142,7 +141,7 @@ class Dictionary(object): ...@@ -142,7 +141,7 @@ class Dictionary(object):
"rebuild the dataset".format(f)) "rebuild the dataset".format(f))
return return
lines = f.readlines() lines = f.read().splitlines()
for line in lines: for line in lines:
idx = line.rfind(' ') idx = line.rfind(' ')
if idx == -1: if idx == -1:
...@@ -174,8 +173,6 @@ class Dictionary(object): ...@@ -174,8 +173,6 @@ class Dictionary(object):
return ids return ids
class RobertaTokenizer(PreTrainedTokenizer): class RobertaTokenizer(PreTrainedTokenizer):
""" """
RoBERTa tokenizer. Peculiarities: RoBERTa tokenizer. Peculiarities:
...@@ -185,25 +182,53 @@ class RobertaTokenizer(PreTrainedTokenizer): ...@@ -185,25 +182,53 @@ class RobertaTokenizer(PreTrainedTokenizer):
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, dict_file, def __init__(self, vocab_file,
bos_token="<s>", eos_token="</s>", **kwargs): bos_token="<s>", eos_token="</s>", **kwargs):
super(RobertaTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, **kwargs) super(RobertaTokenizer, self).__init__(cls_token=bos_token, sep_token=eos_token, eos_token=eos_token, **kwargs)
self.gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
self.dictionary = Dictionary.load(dict_file) self.dictionary = Dictionary.load(vocab_file)
def _tokenize(self, text): def _tokenize(self, text):
""" Use GPT-2 Tokenizer """ """ Use GPT-2 Tokenizer """
return self.gpt2_tokenizer._tokenize(text) return self.gpt2_tokenizer._tokenize(text)
def encode(self, text): def encode(self, text, *args):
""" Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary. """ Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
""" """
gpt2_tokens_joined = " ".join( bpe_sentence = [self.cls_token] + \
str(x) for x in self.gpt2_tokenizer.convert_tokens_to_ids(self.tokenize(text)) self.gpt2_tokenizer.convert_tokens_to_ids(self.tokenize(text)) + \
) [self.sep_token]
bpe_sentence = '<s> ' + gpt2_tokens_joined + ' </s>'
return self.dictionary.encode_line(bpe_sentence, append_eos=False) if len(args):
for additional_sentence in args:
bpe_sentence += [self.sep_token
] + \
self.gpt2_tokenizer.convert_tokens_to_ids(self.tokenize(additional_sentence)) + \
[self.sep_token]
return self.dictionary.encode_line(' '.join([str(token) for token in bpe_sentence]), append_eos=False)
def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
""" Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
with options to remove special tokens and clean up tokenization spaces.
Handles sentence pairs.
"""
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
if any(isinstance(element, list) for element in filtered_tokens):
texts = []
for element in filtered_tokens:
text = self.convert_tokens_to_string(element)
if clean_up_tokenization_spaces:
text = clean_up_tokenization(text)
texts.append(text)
return texts
else:
text = self.convert_tokens_to_string(filtered_tokens)
if clean_up_tokenization_spaces:
text = clean_up_tokenization(text)
return text
def _convert_token_to_id(self, token): def _convert_token_to_id(self, token):
return self.dictionary.index(token) return self.dictionary.index(token)
...@@ -218,3 +243,24 @@ class RobertaTokenizer(PreTrainedTokenizer): ...@@ -218,3 +243,24 @@ class RobertaTokenizer(PreTrainedTokenizer):
def convert_tokens_to_string(self, tokens): def convert_tokens_to_string(self, tokens):
return self.gpt2_tokenizer.convert_tokens_to_string(tokens) return self.gpt2_tokenizer.convert_tokens_to_string(tokens)
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
# Remove the first and last tokens which are cls and sep tokens
ids = ids[1:-1]
# If multi sentence, then split (multi sentence found by looking for two sequential sep tokens)
ids = [list(map(int, example.split(' '))) for example in ' '.join([str(id) for id in ids]).split(' 2 2 ')]
if len(ids) == 1:
tokens = self.gpt2_tokenizer.convert_ids_to_tokens(list(map(lambda id: int(self.dictionary[id]), ids[0])))
else:
tokens = []
for example in ids:
tokens += [
self.gpt2_tokenizer.convert_ids_to_tokens(list(map(lambda id: int(self.dictionary[id]), example)))]
return tokens
def convert_tokens_to_ids(self, tokens):
tokens = " ".join(str(x) for x in self.gpt2_tokenizer.convert_tokens_to_ids(tokens))
bpe_sentence = '<s> ' + tokens + ' </s>'
return self.dictionary.encode_line(bpe_sentence, append_eos=False)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment