"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "6b78360e6d686b316360334f5109b46c39ff5ed8"
Unverified Commit 76d02fea authored by Arthur's avatar Arthur Committed by GitHub
Browse files

Fix doctest (#20843)



* fix doc for generation, dinat, nat and prelayernorm

* style

* update

* fix cpies

* use auto config and auto tokenizer
Co-authored-by: default avatarsgugger <sylvain.gugger@gmail.com>

* als modify roberta and the depending models
Co-authored-by: default avatarsgugger <sylvain.gugger@gmail.com>
parent aaa6296d
...@@ -2264,6 +2264,7 @@ class GenerationMixin: ...@@ -2264,6 +2264,7 @@ class GenerationMixin:
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id >>> model.config.pad_token_id = model.config.eos_token_id
>>> model.generation_config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and" >>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids >>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
......
...@@ -1502,11 +1502,11 @@ class CamembertForCausalLM(CamembertPreTrainedModel): ...@@ -1502,11 +1502,11 @@ class CamembertForCausalLM(CamembertPreTrainedModel):
Example: Example:
```python ```python
>>> from transformers import CamembertTokenizer, CamembertForCausalLM, CamembertConfig >>> from transformers import AutoTokenizer, CamembertForCausalLM, AutoConfig
>>> import torch >>> import torch
>>> tokenizer = CamembertTokenizer.from_pretrained("camembert-base") >>> tokenizer = AutoTokenizer.from_pretrained("camembert-base")
>>> config = CamembertConfig.from_pretrained("camembert-base") >>> config = AutoConfig.from_pretrained("camembert-base")
>>> config.is_decoder = True >>> config.is_decoder = True
>>> model = CamembertForCausalLM.from_pretrained("camembert-base", config=config) >>> model = CamembertForCausalLM.from_pretrained("camembert-base", config=config)
......
...@@ -943,7 +943,7 @@ class DinatBackbone(DinatPreTrainedModel, BackboneMixin): ...@@ -943,7 +943,7 @@ class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") >>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = AutoBackbone.from_pretrained( >>> model = AutoBackbone.from_pretrained(
... "shi-labs/nat-mini-in1k-2240", out_features=["stage1", "stage2", "stage3", "stage4"] ... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... ) ... )
>>> inputs = processor(image, return_tensors="pt") >>> inputs = processor(image, return_tensors="pt")
...@@ -952,7 +952,7 @@ class DinatBackbone(DinatPreTrainedModel, BackboneMixin): ...@@ -952,7 +952,7 @@ class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
>>> feature_maps = outputs.feature_maps >>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape) >>> list(feature_maps[-1].shape)
[1, 2048, 7, 7] [1, 512, 7, 7]
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = ( output_hidden_states = (
......
...@@ -921,7 +921,7 @@ class NatBackbone(NatPreTrainedModel, BackboneMixin): ...@@ -921,7 +921,7 @@ class NatBackbone(NatPreTrainedModel, BackboneMixin):
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") >>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = AutoBackbone.from_pretrained( >>> model = AutoBackbone.from_pretrained(
... "shi-labs/nat-mini-in1k-2240", out_features=["stage1", "stage2", "stage3", "stage4"] ... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... ) ... )
>>> inputs = processor(image, return_tensors="pt") >>> inputs = processor(image, return_tensors="pt")
...@@ -930,7 +930,7 @@ class NatBackbone(NatPreTrainedModel, BackboneMixin): ...@@ -930,7 +930,7 @@ class NatBackbone(NatPreTrainedModel, BackboneMixin):
>>> feature_maps = outputs.feature_maps >>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape) >>> list(feature_maps[-1].shape)
[1, 2048, 7, 7] [1, 512, 7, 7]
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = ( output_hidden_states = (
......
...@@ -956,11 +956,11 @@ class RobertaForCausalLM(RobertaPreTrainedModel): ...@@ -956,11 +956,11 @@ class RobertaForCausalLM(RobertaPreTrainedModel):
Example: Example:
```python ```python
>>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig >>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
>>> import torch >>> import torch
>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = RobertaConfig.from_pretrained("roberta-base") >>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True >>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config) >>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)
......
...@@ -885,7 +885,7 @@ class RobertaPreLayerNormModel(RobertaPreLayerNormPreTrainedModel): ...@@ -885,7 +885,7 @@ class RobertaPreLayerNormModel(RobertaPreLayerNormPreTrainedModel):
"""RoBERTa-PreLayerNorm Model with a `language modeling` head on top for CLM fine-tuning.""", """RoBERTa-PreLayerNorm Model with a `language modeling` head on top for CLM fine-tuning.""",
ROBERTA_PRELAYERNORM_START_DOCSTRING, ROBERTA_PRELAYERNORM_START_DOCSTRING,
) )
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with roberta-base->andreasmadsen/efficient_mlm_m0.40,ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with roberta-base->andreasmadsen/efficient_mlm_m0.40,ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm, RobertaPreLayerNormTokenizer->RobertaTokenizer
class RobertaPreLayerNormForCausalLM(RobertaPreLayerNormPreTrainedModel): class RobertaPreLayerNormForCausalLM(RobertaPreLayerNormPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
...@@ -963,15 +963,11 @@ class RobertaPreLayerNormForCausalLM(RobertaPreLayerNormPreTrainedModel): ...@@ -963,15 +963,11 @@ class RobertaPreLayerNormForCausalLM(RobertaPreLayerNormPreTrainedModel):
Example: Example:
```python ```python
>>> from transformers import ( >>> from transformers import AutoTokenizer, RobertaPreLayerNormForCausalLM, AutoConfig
... RobertaPreLayerNormTokenizer,
... RobertaPreLayerNormForCausalLM,
... RobertaPreLayerNormConfig,
... )
>>> import torch >>> import torch
>>> tokenizer = RobertaPreLayerNormTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> tokenizer = AutoTokenizer.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> config = RobertaPreLayerNormConfig.from_pretrained("andreasmadsen/efficient_mlm_m0.40") >>> config = AutoConfig.from_pretrained("andreasmadsen/efficient_mlm_m0.40")
>>> config.is_decoder = True >>> config.is_decoder = True
>>> model = RobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", config=config) >>> model = RobertaPreLayerNormForCausalLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40", config=config)
......
...@@ -960,11 +960,11 @@ class XLMRobertaForCausalLM(XLMRobertaPreTrainedModel): ...@@ -960,11 +960,11 @@ class XLMRobertaForCausalLM(XLMRobertaPreTrainedModel):
Example: Example:
```python ```python
>>> from transformers import XLMRobertaTokenizer, XLMRobertaForCausalLM, XLMRobertaConfig >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig
>>> import torch >>> import torch
>>> tokenizer = XLMRobertaTokenizer.from_pretrained("roberta-base") >>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = XLMRobertaConfig.from_pretrained("roberta-base") >>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True >>> config.is_decoder = True
>>> model = XLMRobertaForCausalLM.from_pretrained("roberta-base", config=config) >>> model = XLMRobertaForCausalLM.from_pretrained("roberta-base", config=config)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment