Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
75feacf1
Commit
75feacf1
authored
Oct 08, 2019
by
Rémi Louf
Browse files
add general structure for Bert2Bert class
parent
15a2fc88
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
60 additions
and
0 deletions
+60
-0
transformers/modeling_bert.py
transformers/modeling_bert.py
+60
-0
No files found.
transformers/modeling_bert.py
View file @
75feacf1
...
...
@@ -1310,3 +1310,63 @@ class BertForQuestionAnswering(BertPreTrainedModel):
outputs
=
(
total_loss
,)
+
outputs
return
outputs
# (loss), start_logits, end_logits, (hidden_states), (attentions)
@
add_start_docstrings
(
"Bert encoder-decoder model"
,
BERT_START_DOCSTRING
,
BERT_INPUTS_DOCSTRING
)
class
Bert2Bert
(
BertPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = Bert2Bert.from_pretrained('bert-base-uncased')
input = tokenizer.encode("Hello, how are you?")
outputs = model(input)
output_text = tokenize.decode(outputs[0])
print(output_text)
"""
def
__init__
(
self
,
config
):
super
(
Bert2Bert
,
self
).
__init__
(
config
)
self
.
embeddings
=
BertEmbeddings
(
config
)
self
.
encoder
=
BertEncoder
(
config
)
self
.
decoder
=
BertDecoder
(
config
)
def
forward
(
self
,
inputs
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
):
if
attention_mask
is
None
:
attention_mask
=
torch
.
ones_like
(
inputs
)
if
token_type_ids
is
None
:
token_type_ids
=
torch
.
zeros_like
(
inputs
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask
=
attention_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask
=
extended_attention_mask
.
to
(
dtype
=
next
(
self
.
parameters
()).
dtype
)
# fp16 compatibility
extended_attention_mask
=
(
1.0
-
extended_attention_mask
)
*
-
10000.0
embedding_output
=
self
.
embeddings
(
inputs
,
position_ids
=
position_ids
,
token_type_ids
=
token_type_ids
)
encoder_outputs
=
self
.
encoder
(
embedding_output
,
extended_attention_mask
,
head_mask
=
head_mask
)
decoder_outputs
=
self
.
decoder
(
embedding_output
,
encoder_outputs
[
0
],
extended_attention_mask
,
head_mask
=
head_mask
)
sequence_output
=
decoder_outputs
[
0
]
pooled_output
=
self
.
pooler
(
sequence_output
)
outputs
=
(
sequence_output
,
pooled_output
,)
+
encoder_outputs
[
1
:]
# add hidden_states and attentions if they are here
return
outputs
# sequence_output, pooled_output, (hidden_states), (attentions)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment