Unverified Commit 758ed333 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Transformers fast import part 2 (#9446)



* Main init work

* Add version

* Change from absolute to relative imports

* Fix imports

* One more typo

* More typos

* Styling

* Make quality script pass

* Add necessary replace in template

* Fix typos

* Spaces are ignored in replace for some reason

* Forgot one models.

* Fixes for import
Co-authored-by: default avatarLysandreJik <lysandre.debut@reseau.eseo.fr>

* Add documentation

* Styling
Co-authored-by: default avatarLysandreJik <lysandre.debut@reseau.eseo.fr>
parent a400fe89
......@@ -16,8 +16,8 @@ import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
from ...utils import logging
from . import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
logging.set_verbosity_info()
......
......@@ -19,8 +19,9 @@ import argparse
import torch
from transformers import CONFIG_NAME, WEIGHTS_NAME, OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import logging
from ...file_utils import CONFIG_NAME, WEIGHTS_NAME
from ...utils import logging
from . import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
logging.set_verbosity_info()
......
......@@ -22,8 +22,8 @@ import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
from . import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from .configuration_pegasus import DEFAULTS, task_specific_params
PATTERNS = [
......
......@@ -19,8 +19,6 @@ import argparse
import torch
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
......@@ -30,6 +28,8 @@ from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from . import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
logger = logging.get_logger(__name__)
logging.set_verbosity_info()
......
......@@ -21,8 +21,8 @@ import pickle
import numpy as np
import torch
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
from ...utils import logging
from . import ReformerConfig, ReformerModelWithLMHead
logging.set_verbosity_info()
......
......@@ -24,19 +24,9 @@ from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import (
RobertaConfig,
RobertaForMaskedLM,
RobertaForSequenceClassification,
)
from transformers.utils import logging
from ...models.bert.modeling_bert import BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput
from ...utils import logging
from .modeling_roberta import RobertaConfig, RobertaForMaskedLM, RobertaForSequenceClassification
if version.parse(fairseq.__version__) < version.parse("0.9.0"):
......
......@@ -17,8 +17,8 @@
import argparse
from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
from transformers.utils import logging
from ...utils import logging
from . import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
logging.set_verbosity_info()
......
......@@ -22,8 +22,6 @@ from typing import Tuple
import tensorflow as tf
from transformers.modeling_tf_utils import TFWrappedEmbeddings
from ...activations_tf import get_tf_activation
from ...file_utils import (
DUMMY_INPUTS,
......@@ -42,6 +40,7 @@ from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
input_processing,
keras_serializable,
shape_list,
......
......@@ -17,16 +17,16 @@
import argparse
from transformers.models.tapas.modeling_tapas import (
from ...utils import logging
from . import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.models.tapas.tokenization_tapas import TapasTokenizer
from transformers.utils import logging
logging.set_verbosity_info()
......
......@@ -28,9 +28,7 @@ from typing import Callable, Dict, Generator, List, Optional, Text, Tuple, Union
import numpy as np
from transformers import add_end_docstrings
from ...file_utils import is_pandas_available
from ...file_utils import add_end_docstrings, is_pandas_available
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
......
......@@ -22,16 +22,11 @@ import sys
import torch
import transformers.models.transfo_xl.tokenization_transfo_xl as data_utils
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
TransfoXLConfig,
TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl,
)
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import logging
from ...file_utils import CONFIG_NAME, WEIGHTS_NAME
from ...utils import logging
from . import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from . import tokenization_transfo_xl as data_utils
from .tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
logging.set_verbosity_info()
......
......@@ -21,9 +21,9 @@ import json
import numpy
import torch
from transformers import CONFIG_NAME, WEIGHTS_NAME
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import logging
from ...file_utils import CONFIG_NAME, WEIGHTS_NAME
from ...utils import logging
from .tokenization_xlm import VOCAB_FILES_NAMES
logging.set_verbosity_info()
......
......@@ -20,16 +20,15 @@ import os
import torch
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
from ...file_utils import CONFIG_NAME, WEIGHTS_NAME
from ...utils import logging
from . import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import logging
GLUE_TASKS_NUM_LABELS = {
......
......@@ -24,9 +24,78 @@
##
## Put '## COMMENT' to comment on the file.
# To replace in: "src/transformers/__init__.py"
# Below: " # PyTorch models structure" if generating PyTorch
# Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" %}
_import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend(
[
"{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"{{cookiecutter.camelcase_modelname}}ForCausalLM",
"{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"{{cookiecutter.camelcase_modelname}}Layer",
"{{cookiecutter.camelcase_modelname}}Model",
"{{cookiecutter.camelcase_modelname}}PreTrainedModel",
"load_tf_weights_in_{{cookiecutter.lowercase_modelname}}",
]
)
{% else %}
_import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend(
[
"{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"{{cookiecutter.camelcase_modelname}}Model",
]
)
{% endif -%}
# End.
# Below: " # TensorFlow models structure" if generating TensorFlow
# Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" %}
_import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend(
[
"TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"TF{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"TF{{cookiecutter.camelcase_modelname}}ForCausalLM",
"TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"TF{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"TF{{cookiecutter.camelcase_modelname}}Layer",
"TF{{cookiecutter.camelcase_modelname}}Model",
"TF{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
)
{% else %}
_import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend(
[
"TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"TF{{cookiecutter.camelcase_modelname}}Model",
"TF{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
)
{% endif -%}
# End.
# Below: " # Fast tokenizers"
# Replace with:
_import_structure["models.{{cookiecutter.lowercase_modelname}}"].append("{{cookiecutter.camelcase_modelname}}TokenizerFast")
# End.
# Below: " # Models"
# Replace with:
"models.{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP", "{{cookiecutter.camelcase_modelname}}Config", "{{cookiecutter.camelcase_modelname}}Tokenizer"],
# End.
# To replace in: "src/transformers/__init__.py"
# Below: "if is_torch_available():" if generating PyTorch
# Below: " if is_torch_available():" if generating PyTorch
# Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" %}
from .models.{{cookiecutter.lowercase_modelname}} import (
......@@ -53,7 +122,7 @@
{% endif -%}
# End.
# Below: "if is_tf_available():" if generating TensorFlow
# Below: " if is_tf_available():" if generating TensorFlow
# Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" %}
from .models.{{cookiecutter.lowercase_modelname}} import (
......@@ -77,18 +146,25 @@
{% endif -%}
# End.
# Below: "if is_tokenizers_available():"
# Below: " if is_tokenizers_available():"
# Replace with:
from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}TokenizerFast
# End.
# Below: "from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig"
# Below: " from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig"
# Replace with:
from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Tokenizer
from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Tokenizer
# End.
# To replace in: "src/transformers/models/__init__.py"
# Below: "from . import ("
# Replace with:
{{cookiecutter.lowercase_modelname}},
# End.
# To replace in: "src/transformers/models/auto/configuration_auto.py"
# Below: "# Add configs here"
# Replace with:
......
......@@ -23,237 +23,79 @@ import re
PATH_TO_TRANSFORMERS = "src/transformers"
_re_single_line_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
_re_test_backend = re.compile(r"^\s+if\s+is\_([a-z]*)\_available\(\):\s*$")
DUMMY_CONSTANT = """
{0} = None
"""
DUMMY_PT_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
"""
DUMMY_PT_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
"""
DUMMY_PT_FUNCTION = """
def {0}(*args, **kwargs):
requires_pytorch({0})
"""
DUMMY_TF_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
"""
DUMMY_TF_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tf(self)
"""
DUMMY_TF_FUNCTION = """
def {0}(*args, **kwargs):
requires_tf({0})
"""
DUMMY_FLAX_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_flax(self)
BACKENDS = ["torch", "tf", "flax", "sentencepiece", "tokenizers"]
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_flax(self)
"""
DUMMY_FLAX_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_flax(self)
"""
DUMMY_FLAX_FUNCTION = """
def {0}(*args, **kwargs):
requires_flax({0})
"""
DUMMY_SENTENCEPIECE_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_sentencepiece(self)
"""
DUMMY_SENTENCEPIECE_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
"""
DUMMY_SENTENCEPIECE_FUNCTION = """
def {0}(*args, **kwargs):
requires_sentencepiece({0})
DUMMY_CONSTANT = """
{0} = None
"""
DUMMY_TOKENIZERS_PRETRAINED_CLASS = """
DUMMY_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tokenizers(self)
requires_{1}(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tokenizers(self)
requires_{1}(self)
"""
DUMMY_TOKENIZERS_CLASS = """
DUMMY_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tokenizers(self)
requires_{1}(self)
"""
DUMMY_TOKENIZERS_FUNCTION = """
DUMMY_FUNCTION = """
def {0}(*args, **kwargs):
requires_tokenizers({0})
requires_{1}({0})
"""
# Map all these to dummy type
DUMMY_PRETRAINED_CLASS = {
"pt": DUMMY_PT_PRETRAINED_CLASS,
"tf": DUMMY_TF_PRETRAINED_CLASS,
"flax": DUMMY_FLAX_PRETRAINED_CLASS,
"sentencepiece": DUMMY_SENTENCEPIECE_PRETRAINED_CLASS,
"tokenizers": DUMMY_TOKENIZERS_PRETRAINED_CLASS,
}
DUMMY_CLASS = {
"pt": DUMMY_PT_CLASS,
"tf": DUMMY_TF_CLASS,
"flax": DUMMY_FLAX_CLASS,
"sentencepiece": DUMMY_SENTENCEPIECE_CLASS,
"tokenizers": DUMMY_TOKENIZERS_CLASS,
}
DUMMY_FUNCTION = {
"pt": DUMMY_PT_FUNCTION,
"tf": DUMMY_TF_FUNCTION,
"flax": DUMMY_FLAX_FUNCTION,
"sentencepiece": DUMMY_SENTENCEPIECE_FUNCTION,
"tokenizers": DUMMY_TOKENIZERS_FUNCTION,
}
def read_init():
""" Read the init and extracts PyTorch, TensorFlow, SentencePiece and Tokenizers objects. """
with open(os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
# Get to the point we do the actual imports for type checking
line_index = 0
# Find where the SentencePiece imports begin
sentencepiece_objects = []
while not lines[line_index].startswith("if is_sentencepiece_available():"):
line_index += 1
while not lines[line_index].startswith("if TYPE_CHECKING"):
line_index += 1
# Until we unindent, add SentencePiece objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
sentencepiece_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
sentencepiece_objects.append(line[8:-2])
backend_specific_objects = {}
# Go through the end of the file
while line_index < len(lines):
# If the line is an if is_backemd_available, we grab all objects associated.
if _re_test_backend.search(lines[line_index]) is not None:
backend = _re_test_backend.search(lines[line_index]).groups()[0]
line_index += 1
# Find where the Tokenizers imports begin
tokenizers_objects = []
while not lines[line_index].startswith("if is_tokenizers_available():"):
line_index += 1
line_index += 1
# Ignore if backend isn't tracked for dummies.
if backend not in BACKENDS:
continue
# Until we unindent, add Tokenizers objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
objects = []
# Until we unindent, add backend objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
tokenizers_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
tokenizers_objects.append(line[8:-2])
line_index += 1
# Find where the PyTorch imports begin
pt_objects = []
while not lines[line_index].startswith("if is_torch_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
pt_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
pt_objects.append(line[8:-2])
line_index += 1
# Find where the TF imports begin
tf_objects = []
while not lines[line_index].startswith("if is_tf_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
tf_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
tf_objects.append(line[8:-2])
line_index += 1
# Find where the FLAX imports begin
flax_objects = []
while not lines[line_index].startswith("if is_flax_available():"):
line_index += 1
single_line_import_search = _re_single_line_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", "))
elif line.startswith(" " * 12):
objects.append(line[12:-2])
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
flax_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
flax_objects.append(line[8:-2])
backend_specific_objects[backend] = objects
else:
line_index += 1
return sentencepiece_objects, tokenizers_objects, pt_objects, tf_objects, flax_objects
return backend_specific_objects
def create_dummy_object(name, type="pt"):
def create_dummy_object(name, backend_name):
""" Create the code for the dummy object corresponding to `name`."""
_pretrained = [
"Config" "ForCausalLM",
......@@ -266,11 +108,10 @@ def create_dummy_object(name, type="pt"):
"Model",
"Tokenizer",
]
assert type in ["pt", "tf", "sentencepiece", "tokenizers", "flax"]
if name.isupper():
return DUMMY_CONSTANT.format(name)
elif name.islower():
return (DUMMY_FUNCTION[type]).format(name)
return DUMMY_FUNCTION.format(name, backend_name)
else:
is_pretrained = False
for part in _pretrained:
......@@ -278,113 +119,60 @@ def create_dummy_object(name, type="pt"):
is_pretrained = True
break
if is_pretrained:
template = DUMMY_PRETRAINED_CLASS[type]
return DUMMY_PRETRAINED_CLASS.format(name, backend_name)
else:
template = DUMMY_CLASS[type]
return template.format(name)
return DUMMY_CLASS.format(name, backend_name)
def create_dummy_files():
""" Create the content of the dummy files. """
sentencepiece_objects, tokenizers_objects, pt_objects, tf_objects, flax_objects = read_init()
sentencepiece_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
sentencepiece_dummies += "from ..file_utils import requires_sentencepiece\n\n"
sentencepiece_dummies += "\n".join([create_dummy_object(o, type="sentencepiece") for o in sentencepiece_objects])
tokenizers_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
tokenizers_dummies += "from ..file_utils import requires_tokenizers\n\n"
tokenizers_dummies += "\n".join([create_dummy_object(o, type="tokenizers") for o in tokenizers_objects])
backend_specific_objects = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
module_names = {"torch": "pytorch"}
dummy_files = {}
pt_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
pt_dummies += "from ..file_utils import requires_pytorch\n\n"
pt_dummies += "\n".join([create_dummy_object(o, type="pt") for o in pt_objects])
for backend, objects in backend_specific_objects.items():
backend_name = module_names.get(backend, backend)
dummy_file = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += f"from ..file_utils import requires_{backend_name}\n\n"
dummy_file += "\n".join([create_dummy_object(o, backend_name) for o in objects])
dummy_files[backend] = dummy_file
tf_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
tf_dummies += "from ..file_utils import requires_tf\n\n"
tf_dummies += "\n".join([create_dummy_object(o, type="tf") for o in tf_objects])
flax_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
flax_dummies += "from ..file_utils import requires_flax\n\n"
flax_dummies += "\n".join([create_dummy_object(o, type="flax") for o in flax_objects])
return sentencepiece_dummies, tokenizers_dummies, pt_dummies, tf_dummies, flax_dummies
return dummy_files
def check_dummies(overwrite=False):
""" Check if the dummy files are up to date and maybe `overwrite` with the right content. """
sentencepiece_dummies, tokenizers_dummies, pt_dummies, tf_dummies, flax_dummies = create_dummy_files()
path = os.path.join(PATH_TO_TRANSFORMERS, "utils")
sentencepiece_file = os.path.join(path, "dummy_sentencepiece_objects.py")
tokenizers_file = os.path.join(path, "dummy_tokenizers_objects.py")
pt_file = os.path.join(path, "dummy_pt_objects.py")
tf_file = os.path.join(path, "dummy_tf_objects.py")
flax_file = os.path.join(path, "dummy_flax_objects.py")
with open(sentencepiece_file, "r", encoding="utf-8", newline="\n") as f:
actual_sentencepiece_dummies = f.read()
with open(tokenizers_file, "r", encoding="utf-8", newline="\n") as f:
actual_tokenizers_dummies = f.read()
with open(pt_file, "r", encoding="utf-8", newline="\n") as f:
actual_pt_dummies = f.read()
with open(tf_file, "r", encoding="utf-8", newline="\n") as f:
actual_tf_dummies = f.read()
with open(flax_file, "r", encoding="utf-8", newline="\n") as f:
actual_flax_dummies = f.read()
if sentencepiece_dummies != actual_sentencepiece_dummies:
if overwrite:
print("Updating transformers.utils.dummy_sentencepiece_objects.py as the main __init__ has new objects.")
with open(sentencepiece_file, "w", encoding="utf-8", newline="\n") as f:
f.write(sentencepiece_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_sentencepiece_objects.py.",
"Run `make fix-copies` to fix this.",
)
if tokenizers_dummies != actual_tokenizers_dummies:
if overwrite:
print("Updating transformers.utils.dummy_tokenizers_objects.py as the main __init__ has new objects.")
with open(tokenizers_file, "w", encoding="utf-8", newline="\n") as f:
f.write(tokenizers_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_tokenizers_objects.py.",
"Run `make fix-copies` to fix this.",
)
dummy_files = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
short_names = {"torch": "pt"}
if pt_dummies != actual_pt_dummies:
if overwrite:
print("Updating transformers.utils.dummy_pt_objects.py as the main __init__ has new objects.")
with open(pt_file, "w", encoding="utf-8", newline="\n") as f:
f.write(pt_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_pt_objects.py.",
"Run `make fix-copies` to fix this.",
)
if tf_dummies != actual_tf_dummies:
# Locate actual dummy modules and read their content.
path = os.path.join(PATH_TO_TRANSFORMERS, "utils")
dummy_file_paths = {
backend: os.path.join(path, f"dummy_{short_names.get(backend, backend)}_objects.py")
for backend in dummy_files.keys()
}
actual_dummies = {}
for backend, file_path in dummy_file_paths.items():
with open(file_path, "r", encoding="utf-8", newline="\n") as f:
actual_dummies[backend] = f.read()
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print("Updating transformers.utils.dummy_tf_objects.py as the main __init__ has new objects.")
with open(tf_file, "w", encoding="utf-8", newline="\n") as f:
f.write(tf_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_pt_objects.py.",
"Run `make fix-copies` to fix this.",
print(
f"Updating transformers.utils.dummy_{short_names.get(backend, backend)}_objects.py as the main "
"__init__ has new objects."
)
if flax_dummies != actual_flax_dummies:
if overwrite:
print("Updating transformers.utils.dummy_flax_objects.py as the main __init__ has new objects.")
with open(flax_file, "w", encoding="utf-8", newline="\n") as f:
f.write(flax_dummies)
with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n") as f:
f.write(dummy_files[backend])
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_flax_objects.py.",
"Run `make fix-copies` to fix this.",
"The main __init__ has objects that are not present in "
f"transformers.utils.dummy_{short_names.get(backend, backend)}_objects.py. Run `make fix-copies` "
"to fix this."
)
......
......@@ -413,9 +413,6 @@ SHOULD_HAVE_THEIR_OWN_PAGE = [
def ignore_undocumented(name):
"""Rules to determine if `name` should be undocumented."""
# NOT DOCUMENTED ON PURPOSE.
# Magic attributes are not documented.
if name.startswith("__"):
return True
# Constants uppercase are not documented.
if name.isupper():
return True
......@@ -459,7 +456,9 @@ def ignore_undocumented(name):
def check_all_objects_are_documented():
""" Check all models are properly documented."""
documented_objs = find_all_documented_objects()
undocumented_objs = [c for c in dir(transformers) if c not in documented_objs and not ignore_undocumented(c)]
modules = transformers._modules
objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
if len(undocumented_objs) > 0:
raise Exception(
"The following objects are in the public init so should be documented:\n - "
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment