Unverified Commit 758ed333 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Transformers fast import part 2 (#9446)



* Main init work

* Add version

* Change from absolute to relative imports

* Fix imports

* One more typo

* More typos

* Styling

* Make quality script pass

* Add necessary replace in template

* Fix typos

* Spaces are ignored in replace for some reason

* Forgot one models.

* Fixes for import
Co-authored-by: default avatarLysandreJik <lysandre.debut@reseau.eseo.fr>

* Add documentation

* Styling
Co-authored-by: default avatarLysandreJik <lysandre.debut@reseau.eseo.fr>
parent a400fe89
...@@ -16,6 +16,12 @@ ...@@ -16,6 +16,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and
# once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are
# only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used
# to defer the actual importing for when the objects are requested. This way `import transformers` provides the names
# in the namespace without actually importing anything (and especially none of the backends).
__version__ = "4.2.0dev0" __version__ = "4.2.0dev0"
# Work around to update TensorFlow's absl.logging threshold which alters the # Work around to update TensorFlow's absl.logging threshold which alters the
...@@ -31,13 +37,1097 @@ else: ...@@ -31,13 +37,1097 @@ else:
absl.logging.set_stderrthreshold("info") absl.logging.set_stderrthreshold("info")
absl.logging._warn_preinit_stderr = False absl.logging._warn_preinit_stderr = False
from typing import TYPE_CHECKING
# Check the dependencies satisfy the minimal versions required.
from . import dependency_versions_check from . import dependency_versions_check
from .file_utils import (
_BaseLazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
from .utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Base objects, independent of any specific backend
_import_structure = {
"configuration_utils": ["PretrainedConfig"],
"data": [
"DataProcessor",
"InputExample",
"InputFeatures",
"SingleSentenceClassificationProcessor",
"SquadExample",
"SquadFeatures",
"SquadV1Processor",
"SquadV2Processor",
"glue_compute_metrics",
"glue_convert_examples_to_features",
"glue_output_modes",
"glue_processors",
"glue_tasks_num_labels",
"squad_convert_examples_to_features",
"xnli_compute_metrics",
"xnli_output_modes",
"xnli_processors",
"xnli_tasks_num_labels",
],
"file_utils": [
"CONFIG_NAME",
"MODEL_CARD_NAME",
"PYTORCH_PRETRAINED_BERT_CACHE",
"PYTORCH_TRANSFORMERS_CACHE",
"SPIECE_UNDERLINE",
"TF2_WEIGHTS_NAME",
"TF_WEIGHTS_NAME",
"TRANSFORMERS_CACHE",
"WEIGHTS_NAME",
"add_end_docstrings",
"add_start_docstrings",
"cached_path",
"is_apex_available",
"is_datasets_available",
"is_faiss_available",
"is_flax_available",
"is_psutil_available",
"is_py3nvml_available",
"is_sentencepiece_available",
"is_sklearn_available",
"is_tf_available",
"is_tokenizers_available",
"is_torch_available",
"is_torch_tpu_available",
],
"hf_argparser": ["HfArgumentParser"],
"integrations": [
"is_comet_available",
"is_optuna_available",
"is_ray_available",
"is_ray_tune_available",
"is_tensorboard_available",
"is_wandb_available",
],
"modelcard": ["ModelCard"],
"modeling_tf_pytorch_utils": [
"convert_tf_weight_name_to_pt_weight_name",
"load_pytorch_checkpoint_in_tf2_model",
"load_pytorch_model_in_tf2_model",
"load_pytorch_weights_in_tf2_model",
"load_tf2_checkpoint_in_pytorch_model",
"load_tf2_model_in_pytorch_model",
"load_tf2_weights_in_pytorch_model",
],
"models": [],
# Models
"models.albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig"],
"models.auto": [
"ALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CONFIG_MAPPING",
"MODEL_NAMES_MAPPING",
"TOKENIZER_MAPPING",
"AutoConfig",
"AutoTokenizer",
],
"models.bart": ["BartConfig", "BartTokenizer"],
"models.barthez": [],
"models.bert": [
"BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BasicTokenizer",
"BertConfig",
"BertTokenizer",
"WordpieceTokenizer",
],
"models.bert_generation": ["BertGenerationConfig"],
"models.bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"],
"models.bertweet": ["BertweetTokenizer"],
"models.blenderbot": ["BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotTokenizer"],
"models.blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallTokenizer",
],
"models.camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig"],
"models.ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig", "CTRLTokenizer"],
"models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"],
"models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"],
"models.dpr": [
"DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DPRConfig",
"DPRContextEncoderTokenizer",
"DPRQuestionEncoderTokenizer",
"DPRReaderOutput",
"DPRReaderTokenizer",
],
"models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"],
"models.encoder_decoder": ["EncoderDecoderConfig"],
"models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"],
"models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"],
"models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"],
"models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"],
"models.herbert": ["HerbertTokenizer"],
"models.layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMTokenizer"],
"models.led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig", "LEDTokenizer"],
"models.longformer": ["LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerTokenizer"],
"models.lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig", "LxmertTokenizer"],
"models.marian": ["MarianConfig"],
"models.mbart": ["MBartConfig"],
"models.mmbt": ["MMBTConfig"],
"models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"],
"models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"],
"models.mt5": ["MT5Config"],
"models.openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig", "OpenAIGPTTokenizer"],
"models.pegasus": ["PegasusConfig"],
"models.phobert": ["PhobertTokenizer"],
"models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"],
"models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
"models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
"models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"],
"models.roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaTokenizer"],
"models.squeezebert": ["SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertTokenizer"],
"models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"],
"models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"],
"models.transfo_xl": [
"TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TransfoXLConfig",
"TransfoXLCorpus",
"TransfoXLTokenizer",
],
"models.xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMTokenizer"],
"models.xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"],
"models.xlm_roberta": ["XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig"],
"models.xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"],
"pipelines": [
"Conversation",
"ConversationalPipeline",
"CsvPipelineDataFormat",
"FeatureExtractionPipeline",
"FillMaskPipeline",
"JsonPipelineDataFormat",
"NerPipeline",
"PipedPipelineDataFormat",
"Pipeline",
"PipelineDataFormat",
"QuestionAnsweringPipeline",
"SummarizationPipeline",
"TableQuestionAnsweringPipeline",
"Text2TextGenerationPipeline",
"TextClassificationPipeline",
"TextGenerationPipeline",
"TokenClassificationPipeline",
"TranslationPipeline",
"ZeroShotClassificationPipeline",
"pipeline",
],
"tokenization_utils": ["PreTrainedTokenizer"],
"tokenization_utils_base": [
"AddedToken",
"BatchEncoding",
"CharSpan",
"PreTrainedTokenizerBase",
"SpecialTokensMixin",
"TensorType",
"TokenSpan",
],
"trainer_callback": [
"DefaultFlowCallback",
"EarlyStoppingCallback",
"PrinterCallback",
"ProgressCallback",
"TrainerCallback",
"TrainerControl",
"TrainerState",
],
"trainer_utils": ["EvalPrediction", "EvaluationStrategy", "SchedulerType", "set_seed"],
"training_args": ["TrainingArguments"],
"training_args_seq2seq": ["Seq2SeqTrainingArguments"],
"training_args_tf": ["TFTrainingArguments"],
"utils": ["logging"],
}
# sentencepiece-backed objects
if is_sentencepiece_available():
_import_structure["models.albert"].append("AlbertTokenizer")
_import_structure["models.barthez"].append("BarthezTokenizer")
_import_structure["models.bert_generation"].append("BertGenerationTokenizer")
_import_structure["models.camembert"].append("CamembertTokenizer")
_import_structure["models.marian"].append("MarianTokenizer")
_import_structure["models.mbart"].append("MBartTokenizer")
_import_structure["models.mt5"].append("MT5Tokenizer")
_import_structure["models.pegasus"].append("PegasusTokenizer")
_import_structure["models.reformer"].append("ReformerTokenizer")
_import_structure["models.t5"].append("T5Tokenizer")
_import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer")
_import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer")
_import_structure["models.xlnet"].append("XLNetTokenizer")
else:
from .utils import dummy_sentencepiece_objects
_import_structure["utils.dummy_sentencepiece_objects"] = [
name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_")
]
# tokenziers-backed objects
if is_tokenizers_available():
# Fast tokenizers
_import_structure["models.albert"].append("AlbertTokenizerFast")
_import_structure["models.bart"].append("BartTokenizerFast")
_import_structure["models.barthez"].append("BarthezTokenizerFast")
_import_structure["models.bert"].append("BertTokenizerFast")
_import_structure["models.camembert"].append("CamembertTokenizerFast")
_import_structure["models.distilbert"].append("DistilBertTokenizerFast")
_import_structure["models.dpr"].extend(
["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"]
)
_import_structure["models.electra"].append("ElectraTokenizerFast")
_import_structure["models.funnel"].append("FunnelTokenizerFast")
_import_structure["models.gpt2"].append("GPT2TokenizerFast")
_import_structure["models.herbert"].append("HerbertTokenizerFast")
_import_structure["models.layoutlm"].append("LayoutLMTokenizerFast")
_import_structure["models.led"].append("LEDTokenizerFast")
_import_structure["models.longformer"].append("LongformerTokenizerFast")
_import_structure["models.lxmert"].append("LxmertTokenizerFast")
_import_structure["models.mbart"].append("MBartTokenizerFast")
_import_structure["models.mobilebert"].append("MobileBertTokenizerFast")
_import_structure["models.mpnet"].append("MPNetTokenizerFast")
_import_structure["models.mt5"].append("MT5TokenizerFast")
_import_structure["models.openai"].append("OpenAIGPTTokenizerFast")
_import_structure["models.pegasus"].append("PegasusTokenizerFast")
_import_structure["models.reformer"].append("ReformerTokenizerFast")
_import_structure["models.retribert"].append("RetriBertTokenizerFast")
_import_structure["models.roberta"].append("RobertaTokenizerFast")
_import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast")
_import_structure["models.t5"].append("T5TokenizerFast")
_import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast")
_import_structure["models.xlnet"].append("XLNetTokenizerFast")
_import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"]
if is_sentencepiece_available():
_import_structure["convert_slow_tokenizer"] = ["SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer"]
else:
from .utils import dummy_tokenizers_objects
_import_structure["utils.dummy_tokenizers_objects"] = [
name for name in dir(dummy_tokenizers_objects) if not name.startswith("_")
]
# PyTorch-backed objects
if is_torch_available():
_import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"]
_import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"]
_import_structure["data.data_collator"] = [
"DataCollator",
"DataCollatorForLanguageModeling",
"DataCollatorForPermutationLanguageModeling",
"DataCollatorForSOP",
"DataCollatorForTokenClassification",
"DataCollatorForWholeWordMask",
"DataCollatorWithPadding",
"default_data_collator",
]
_import_structure["data.datasets"] = [
"GlueDataset",
"GlueDataTrainingArguments",
"LineByLineTextDataset",
"LineByLineWithRefDataset",
"LineByLineWithSOPTextDataset",
"SquadDataset",
"SquadDataTrainingArguments",
"TextDataset",
"TextDatasetForNextSentencePrediction",
]
_import_structure["generation_beam_search"] = ["BeamScorer", "BeamSearchScorer"]
_import_structure["generation_logits_process"] = [
"HammingDiversityLogitsProcessor",
"LogitsProcessor",
"LogitsProcessorList",
"LogitsWarper",
"MinLengthLogitsProcessor",
"NoBadWordsLogitsProcessor",
"NoRepeatNGramLogitsProcessor",
"PrefixConstrainedLogitsProcessor",
"RepetitionPenaltyLogitsProcessor",
"TemperatureLogitsWarper",
"TopKLogitsWarper",
"TopPLogitsWarper",
]
_import_structure["generation_utils"] = ["top_k_top_p_filtering"]
_import_structure["modeling_utils"] = ["Conv1D", "PreTrainedModel", "apply_chunking_to_forward", "prune_layer"]
# PyTorch models structure
_import_structure["models.albert"].extend(
[
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"AlbertForMaskedLM",
"AlbertForMultipleChoice",
"AlbertForPreTraining",
"AlbertForQuestionAnswering",
"AlbertForSequenceClassification",
"AlbertForTokenClassification",
"AlbertModel",
"AlbertPreTrainedModel",
"load_tf_weights_in_albert",
]
)
_import_structure["models.auto"].extend(
[
"MODEL_FOR_CAUSAL_LM_MAPPING",
"MODEL_FOR_MASKED_LM_MAPPING",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"MODEL_FOR_PRETRAINING_MAPPING",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"MODEL_MAPPING",
"MODEL_WITH_LM_HEAD_MAPPING",
"AutoModel",
"AutoModelForCausalLM",
"AutoModelForMaskedLM",
"AutoModelForMultipleChoice",
"AutoModelForNextSentencePrediction",
"AutoModelForPreTraining",
"AutoModelForQuestionAnswering",
"AutoModelForSeq2SeqLM",
"AutoModelForSequenceClassification",
"AutoModelForTableQuestionAnswering",
"AutoModelForTokenClassification",
"AutoModelWithLMHead",
]
)
_import_structure["models.bart"].extend(
[
"BART_PRETRAINED_MODEL_ARCHIVE_LIST",
"BartForConditionalGeneration",
"BartForQuestionAnswering",
"BartForSequenceClassification",
"BartModel",
"BartPretrainedModel",
"PretrainedBartModel",
]
)
_import_structure["models.bert"].extend(
[
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BertForMaskedLM",
"BertForMultipleChoice",
"BertForNextSentencePrediction",
"BertForPreTraining",
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
"load_tf_weights_in_bert",
]
)
_import_structure["models.bert_generation"].extend(
[
"BertGenerationDecoder",
"BertGenerationEncoder",
"load_tf_weights_in_bert_generation",
]
)
_import_structure["models.blenderbot"].extend(
[
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
]
)
_import_structure["models.blenderbot_small"].extend(
[
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
]
)
_import_structure["models.camembert"].extend(
[
"CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CamembertForCausalLM",
"CamembertForMaskedLM",
"CamembertForMultipleChoice",
"CamembertForQuestionAnswering",
"CamembertForSequenceClassification",
"CamembertForTokenClassification",
"CamembertModel",
]
)
_import_structure["models.ctrl"].extend(
[
"CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"CTRLForSequenceClassification",
"CTRLLMHeadModel",
"CTRLModel",
"CTRLPreTrainedModel",
]
)
_import_structure["models.deberta"].extend(
[
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForSequenceClassification",
"DebertaModel",
"DebertaPreTrainedModel",
]
)
_import_structure["models.distilbert"].extend(
[
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
)
_import_structure["models.dpr"].extend(
[
"DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPRContextEncoder",
"DPRPretrainedContextEncoder",
"DPRPretrainedQuestionEncoder",
"DPRPretrainedReader",
"DPRQuestionEncoder",
"DPRReader",
]
)
_import_structure["models.electra"].extend(
[
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"ElectraForMaskedLM",
"ElectraForMultipleChoice",
"ElectraForPreTraining",
"ElectraForQuestionAnswering",
"ElectraForSequenceClassification",
"ElectraForTokenClassification",
"ElectraModel",
"ElectraPreTrainedModel",
"load_tf_weights_in_electra",
]
)
_import_structure["models.encoder_decoder"].append("EncoderDecoderModel")
_import_structure["models.flaubert"].extend(
[
"FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaubertForMultipleChoice",
"FlaubertForQuestionAnswering",
"FlaubertForQuestionAnsweringSimple",
"FlaubertForSequenceClassification",
"FlaubertForTokenClassification",
"FlaubertModel",
"FlaubertWithLMHeadModel",
]
)
_import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
_import_structure["models.funnel"].extend(
[
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"load_tf_weights_in_funnel",
]
)
_import_structure["models.gpt2"].extend(
[
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPT2DoubleHeadsModel",
"GPT2ForSequenceClassification",
"GPT2LMHeadModel",
"GPT2Model",
"GPT2PreTrainedModel",
"load_tf_weights_in_gpt2",
]
)
_import_structure["models.layoutlm"].extend(
[
"LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"LayoutLMForMaskedLM",
"LayoutLMForTokenClassification",
"LayoutLMModel",
]
)
_import_structure["models.led"].extend(
[
"LED_PRETRAINED_MODEL_ARCHIVE_LIST",
"LEDForConditionalGeneration",
"LEDForQuestionAnswering",
"LEDForSequenceClassification",
"LEDModel",
]
)
_import_structure["models.longformer"].extend(
[
"LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongformerForMaskedLM",
"LongformerForMultipleChoice",
"LongformerForQuestionAnswering",
"LongformerForSequenceClassification",
"LongformerForTokenClassification",
"LongformerModel",
"LongformerSelfAttention",
]
)
_import_structure["models.lxmert"].extend(
[
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
)
_import_structure["models.marian"].extend(["MarianModel", "MarianMTModel"])
_import_structure["models.mbart"].extend(
[
"MBartForConditionalGeneration",
"MBartForQuestionAnswering",
"MBartForSequenceClassification",
"MBartModel",
]
)
_import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"])
_import_structure["models.mobilebert"].extend(
[
"MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileBertForMaskedLM",
"MobileBertForMultipleChoice",
"MobileBertForNextSentencePrediction",
"MobileBertForPreTraining",
"MobileBertForQuestionAnswering",
"MobileBertForSequenceClassification",
"MobileBertForTokenClassification",
"MobileBertLayer",
"MobileBertModel",
"MobileBertPreTrainedModel",
"load_tf_weights_in_mobilebert",
]
)
_import_structure["models.mpnet"].extend(
[
"MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"MPNetForMaskedLM",
"MPNetForMultipleChoice",
"MPNetForQuestionAnswering",
"MPNetForSequenceClassification",
"MPNetForTokenClassification",
"MPNetLayer",
"MPNetModel",
"MPNetPreTrainedModel",
]
)
_import_structure["models.mt5"].extend(["MT5EncoderModel", "MT5ForConditionalGeneration", "MT5Model"])
_import_structure["models.openai"].extend(
[
"OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OpenAIGPTDoubleHeadsModel",
"OpenAIGPTForSequenceClassification",
"OpenAIGPTLMHeadModel",
"OpenAIGPTModel",
"OpenAIGPTPreTrainedModel",
"load_tf_weights_in_openai_gpt",
]
)
_import_structure["models.pegasus"].extend(["PegasusForConditionalGeneration", "PegasusModel"])
_import_structure["models.prophetnet"].extend(
[
"PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"ProphetNetDecoder",
"ProphetNetEncoder",
"ProphetNetForCausalLM",
"ProphetNetForConditionalGeneration",
"ProphetNetModel",
"ProphetNetPreTrainedModel",
]
)
_import_structure["models.rag"].extend(["RagModel", "RagSequenceForGeneration", "RagTokenForGeneration"])
_import_structure["models.reformer"].extend(
[
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
]
)
_import_structure["models.retribert"].extend(
["RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel"]
)
_import_structure["models.roberta"].extend(
[
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
]
)
_import_structure["models.squeezebert"].extend(
[
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"SqueezeBertForMaskedLM",
"SqueezeBertForMultipleChoice",
"SqueezeBertForQuestionAnswering",
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
)
_import_structure["models.t5"].extend(
[
"T5_PRETRAINED_MODEL_ARCHIVE_LIST",
"T5EncoderModel",
"T5ForConditionalGeneration",
"T5Model",
"T5PreTrainedModel",
"load_tf_weights_in_t5",
]
)
_import_structure["models.tapas"].extend(
[
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TapasForMaskedLM",
"TapasForQuestionAnswering",
"TapasForSequenceClassification",
"TapasModel",
]
)
_import_structure["models.transfo_xl"].extend(
[
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"AdaptiveEmbedding",
"TransfoXLForSequenceClassification",
"TransfoXLLMHeadModel",
"TransfoXLModel",
"TransfoXLPreTrainedModel",
"load_tf_weights_in_transfo_xl",
]
)
_import_structure["models.xlm"].extend(
[
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
)
_import_structure["models.xlm_prophetnet"].extend(
[
"XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMProphetNetDecoder",
"XLMProphetNetEncoder",
"XLMProphetNetForCausalLM",
"XLMProphetNetForConditionalGeneration",
"XLMProphetNetModel",
]
)
_import_structure["models.xlm_roberta"].extend(
[
"XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMRobertaForCausalLM",
"XLMRobertaForMaskedLM",
"XLMRobertaForMultipleChoice",
"XLMRobertaForQuestionAnswering",
"XLMRobertaForSequenceClassification",
"XLMRobertaForTokenClassification",
"XLMRobertaModel",
]
)
_import_structure["models.xlnet"].extend(
[
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
)
_import_structure["optimization"] = [
"Adafactor",
"AdamW",
"get_constant_schedule",
"get_constant_schedule_with_warmup",
"get_cosine_schedule_with_warmup",
"get_cosine_with_hard_restarts_schedule_with_warmup",
"get_linear_schedule_with_warmup",
"get_polynomial_decay_schedule_with_warmup",
"get_scheduler",
]
_import_structure["trainer"] = ["Trainer"]
_import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"]
_import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"]
else:
from .utils import dummy_pt_objects
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
# TensorFlow-backed objects
if is_tf_available():
_import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"]
_import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"]
_import_structure["generation_tf_utils"] = ["tf_top_k_top_p_filtering"]
_import_structure["modeling_tf_utils"] = [
"TFPreTrainedModel",
"TFSequenceSummary",
"TFSharedEmbeddings",
"shape_list",
]
# TensorFlow models structure
_import_structure["models.albert"].extend(
[
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFAlbertForMaskedLM",
"TFAlbertForMultipleChoice",
"TFAlbertForPreTraining",
"TFAlbertForQuestionAnswering",
"TFAlbertForSequenceClassification",
"TFAlbertForTokenClassification",
"TFAlbertMainLayer",
"TFAlbertModel",
"TFAlbertPreTrainedModel",
]
)
_import_structure["models.auto"].extend(
[
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_MASKED_LM_MAPPING",
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"TF_MODEL_FOR_PRETRAINING_MAPPING",
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"TF_MODEL_MAPPING",
"TF_MODEL_WITH_LM_HEAD_MAPPING",
"TFAutoModel",
"TFAutoModelForCausalLM",
"TFAutoModelForMaskedLM",
"TFAutoModelForMultipleChoice",
"TFAutoModelForPreTraining",
"TFAutoModelForQuestionAnswering",
"TFAutoModelForSeq2SeqLM",
"TFAutoModelForSequenceClassification",
"TFAutoModelForTokenClassification",
"TFAutoModelWithLMHead",
]
)
_import_structure["models.bart"].extend(["TFBartForConditionalGeneration", "TFBartModel", "TFBartPretrainedModel"])
_import_structure["models.bert"].extend(
[
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFBertEmbeddings",
"TFBertForMaskedLM",
"TFBertForMultipleChoice",
"TFBertForNextSentencePrediction",
"TFBertForPreTraining",
"TFBertForQuestionAnswering",
"TFBertForSequenceClassification",
"TFBertForTokenClassification",
"TFBertLMHeadModel",
"TFBertMainLayer",
"TFBertModel",
"TFBertPreTrainedModel",
]
)
_import_structure["models.blenderbot"].append("TFBlenderbotForConditionalGeneration")
_import_structure["models.camembert"].extend(
[
"TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCamembertForMaskedLM",
"TFCamembertForMultipleChoice",
"TFCamembertForQuestionAnswering",
"TFCamembertForSequenceClassification",
"TFCamembertForTokenClassification",
"TFCamembertModel",
]
)
_import_structure["models.ctrl"].extend(
[
"TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCTRLForSequenceClassification",
"TFCTRLLMHeadModel",
"TFCTRLModel",
"TFCTRLPreTrainedModel",
]
)
_import_structure["models.distilbert"].extend(
[
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
)
_import_structure["models.dpr"].extend(
[
"TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDPRContextEncoder",
"TFDPRPretrainedContextEncoder",
"TFDPRPretrainedQuestionEncoder",
"TFDPRPretrainedReader",
"TFDPRQuestionEncoder",
"TFDPRReader",
]
)
_import_structure["models.electra"].extend(
[
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFElectraForMaskedLM",
"TFElectraForMultipleChoice",
"TFElectraForPreTraining",
"TFElectraForQuestionAnswering",
"TFElectraForSequenceClassification",
"TFElectraForTokenClassification",
"TFElectraModel",
"TFElectraPreTrainedModel",
]
)
_import_structure["models.flaubert"].extend(
[
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFlaubertForMultipleChoice",
"TFFlaubertForQuestionAnsweringSimple",
"TFFlaubertForSequenceClassification",
"TFFlaubertForTokenClassification",
"TFFlaubertModel",
"TFFlaubertWithLMHeadModel",
]
)
_import_structure["models.funnel"].extend(
[
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
]
)
_import_structure["models.gpt2"].extend(
[
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGPT2DoubleHeadsModel",
"TFGPT2ForSequenceClassification",
"TFGPT2LMHeadModel",
"TFGPT2MainLayer",
"TFGPT2Model",
"TFGPT2PreTrainedModel",
]
)
_import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"])
_import_structure["models.longformer"].extend(
[
"TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLongformerForMaskedLM",
"TFLongformerForMultipleChoice",
"TFLongformerForQuestionAnswering",
"TFLongformerForSequenceClassification",
"TFLongformerForTokenClassification",
"TFLongformerModel",
"TFLongformerSelfAttention",
]
)
_import_structure["models.lxmert"].extend(
[
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
)
_import_structure["models.marian"].append("TFMarianMTModel")
_import_structure["models.mbart"].append("TFMBartForConditionalGeneration")
_import_structure["models.mobilebert"].extend(
[
"TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileBertForMaskedLM",
"TFMobileBertForMultipleChoice",
"TFMobileBertForNextSentencePrediction",
"TFMobileBertForPreTraining",
"TFMobileBertForQuestionAnswering",
"TFMobileBertForSequenceClassification",
"TFMobileBertForTokenClassification",
"TFMobileBertMainLayer",
"TFMobileBertModel",
"TFMobileBertPreTrainedModel",
]
)
_import_structure["models.mpnet"].extend(
[
"TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMPNetForMaskedLM",
"TFMPNetForMultipleChoice",
"TFMPNetForQuestionAnswering",
"TFMPNetForSequenceClassification",
"TFMPNetForTokenClassification",
"TFMPNetMainLayer",
"TFMPNetModel",
"TFMPNetPreTrainedModel",
]
)
_import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"])
_import_structure["models.openai"].extend(
[
"TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFOpenAIGPTDoubleHeadsModel",
"TFOpenAIGPTForSequenceClassification",
"TFOpenAIGPTLMHeadModel",
"TFOpenAIGPTMainLayer",
"TFOpenAIGPTModel",
"TFOpenAIGPTPreTrainedModel",
]
)
_import_structure["models.pegasus"].append("TFPegasusForConditionalGeneration")
_import_structure["models.roberta"].extend(
[
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
)
_import_structure["models.t5"].extend(
[
"TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFT5EncoderModel",
"TFT5ForConditionalGeneration",
"TFT5Model",
"TFT5PreTrainedModel",
]
)
_import_structure["models.transfo_xl"].extend(
[
"TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFAdaptiveEmbedding",
"TFTransfoXLForSequenceClassification",
"TFTransfoXLLMHeadModel",
"TFTransfoXLMainLayer",
"TFTransfoXLModel",
"TFTransfoXLPreTrainedModel",
]
)
_import_structure["models.xlm"].extend(
[
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
)
_import_structure["models.xlm_roberta"].extend(
[
"TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMRobertaForMaskedLM",
"TFXLMRobertaForMultipleChoice",
"TFXLMRobertaForQuestionAnswering",
"TFXLMRobertaForSequenceClassification",
"TFXLMRobertaForTokenClassification",
"TFXLMRobertaModel",
]
)
_import_structure["models.xlnet"].extend(
[
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
)
_import_structure["optimization_tf"] = ["AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer"]
_import_structure["trainer_tf"] = ["TFTrainer"]
else:
from .utils import dummy_tf_objects
_import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")]
# FLAX-backed objects
if is_flax_available():
_import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"]
_import_structure["models.auto"].extend(["FLAX_MODEL_MAPPING", "FlaxAutoModel"])
_import_structure["models.bert"].extend(["FlaxBertForMaskedLM", "FlaxBertModel"])
_import_structure["models.roberta"].append("FlaxRobertaModel")
else:
from .utils import dummy_flax_objects
_import_structure["utils.dummy_flax_objects"] = [
name for name in dir(dummy_flax_objects) if not name.startswith("_")
]
# Configuration
from .configuration_utils import PretrainedConfig
# Data # Direct imports for type-checking
from .data import ( if TYPE_CHECKING:
# Configuration
from .configuration_utils import PretrainedConfig
# Data
from .data import (
DataProcessor, DataProcessor,
InputExample, InputExample,
InputFeatures, InputFeatures,
...@@ -56,10 +1146,10 @@ from .data import ( ...@@ -56,10 +1146,10 @@ from .data import (
xnli_output_modes, xnli_output_modes,
xnli_processors, xnli_processors,
xnli_tasks_num_labels, xnli_tasks_num_labels,
) )
# Files and general utilities # Files and general utilities
from .file_utils import ( from .file_utils import (
CONFIG_NAME, CONFIG_NAME,
MODEL_CARD_NAME, MODEL_CARD_NAME,
PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
...@@ -84,14 +1174,24 @@ from .file_utils import ( ...@@ -84,14 +1174,24 @@ from .file_utils import (
is_tokenizers_available, is_tokenizers_available,
is_torch_available, is_torch_available,
is_torch_tpu_available, is_torch_tpu_available,
) )
from .hf_argparser import HfArgumentParser from .hf_argparser import HfArgumentParser
# Model Cards # Integrations
from .modelcard import ModelCard from .integrations import (
is_comet_available,
is_optuna_available,
is_ray_available,
is_ray_tune_available,
is_tensorboard_available,
is_wandb_available,
)
# Model Cards
from .modelcard import ModelCard
# TF 2.0 <=> PyTorch conversion utilities # TF 2.0 <=> PyTorch conversion utilities
from .modeling_tf_pytorch_utils import ( from .modeling_tf_pytorch_utils import (
convert_tf_weight_name_to_pt_weight_name, convert_tf_weight_name_to_pt_weight_name,
load_pytorch_checkpoint_in_tf2_model, load_pytorch_checkpoint_in_tf2_model,
load_pytorch_model_in_tf2_model, load_pytorch_model_in_tf2_model,
...@@ -99,86 +1199,86 @@ from .modeling_tf_pytorch_utils import ( ...@@ -99,86 +1199,86 @@ from .modeling_tf_pytorch_utils import (
load_tf2_checkpoint_in_pytorch_model, load_tf2_checkpoint_in_pytorch_model,
load_tf2_model_in_pytorch_model, load_tf2_model_in_pytorch_model,
load_tf2_weights_in_pytorch_model, load_tf2_weights_in_pytorch_model,
) )
from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig
from .models.auto import ( from .models.auto import (
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, ALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
CONFIG_MAPPING, CONFIG_MAPPING,
MODEL_NAMES_MAPPING, MODEL_NAMES_MAPPING,
TOKENIZER_MAPPING, TOKENIZER_MAPPING,
AutoConfig, AutoConfig,
AutoTokenizer, AutoTokenizer,
) )
from .models.bart import BartConfig, BartTokenizer from .models.bart import BartConfig, BartTokenizer
from .models.bert import ( from .models.bert import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BasicTokenizer, BasicTokenizer,
BertConfig, BertConfig,
BertTokenizer, BertTokenizer,
WordpieceTokenizer, WordpieceTokenizer,
) )
from .models.bert_generation import BertGenerationConfig from .models.bert_generation import BertGenerationConfig
from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer from .models.bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
from .models.bertweet import BertweetTokenizer from .models.bertweet import BertweetTokenizer
from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer from .models.blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotTokenizer
from .models.blenderbot_small import ( from .models.blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig, BlenderbotSmallConfig,
BlenderbotSmallTokenizer, BlenderbotSmallTokenizer,
) )
from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig
from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer from .models.ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig, CTRLTokenizer
from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer
from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer
from .models.dpr import ( from .models.dpr import (
DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPRConfig, DPRConfig,
DPRContextEncoderTokenizer, DPRContextEncoderTokenizer,
DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizer,
DPRReaderOutput, DPRReaderOutput,
DPRReaderTokenizer, DPRReaderTokenizer,
) )
from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer
from .models.encoder_decoder import EncoderDecoderConfig from .models.encoder_decoder import EncoderDecoderConfig
from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer
from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer
from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer
from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer
from .models.herbert import HerbertTokenizer from .models.herbert import HerbertTokenizer
from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer from .models.layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMTokenizer
from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer from .models.led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig, LEDTokenizer
from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer from .models.longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerTokenizer
from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer from .models.lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig, LxmertTokenizer
from .models.marian import MarianConfig from .models.marian import MarianConfig
from .models.mbart import MBartConfig from .models.mbart import MBartConfig
from .models.mmbt import MMBTConfig from .models.mmbt import MMBTConfig
from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer
from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer
from .models.mt5 import MT5Config from .models.mt5 import MT5Config
from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer from .models.openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig, OpenAIGPTTokenizer
from .models.pegasus import PegasusConfig from .models.pegasus import PegasusConfig
from .models.phobert import PhobertTokenizer from .models.phobert import PhobertTokenizer
from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer
from .models.rag import RagConfig, RagRetriever, RagTokenizer from .models.rag import RagConfig, RagRetriever, RagTokenizer
from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer
from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer from .models.roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaTokenizer
from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer from .models.squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertTokenizer
from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer
from .models.transfo_xl import ( from .models.transfo_xl import (
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
TransfoXLConfig, TransfoXLConfig,
TransfoXLCorpus, TransfoXLCorpus,
TransfoXLTokenizer, TransfoXLTokenizer,
) )
from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer from .models.xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMTokenizer
from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig from .models.xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig
from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig from .models.xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig
from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig from .models.xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
# Pipelines # Pipelines
from .pipelines import ( from .pipelines import (
Conversation, Conversation,
ConversationalPipeline, ConversationalPipeline,
CsvPipelineDataFormat, CsvPipelineDataFormat,
...@@ -199,11 +1299,11 @@ from .pipelines import ( ...@@ -199,11 +1299,11 @@ from .pipelines import (
TranslationPipeline, TranslationPipeline,
ZeroShotClassificationPipeline, ZeroShotClassificationPipeline,
pipeline, pipeline,
) )
# Tokenization # Tokenization
from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils import PreTrainedTokenizer
from .tokenization_utils_base import ( from .tokenization_utils_base import (
AddedToken, AddedToken,
BatchEncoding, BatchEncoding,
CharSpan, CharSpan,
...@@ -211,22 +1311,24 @@ from .tokenization_utils_base import ( ...@@ -211,22 +1311,24 @@ from .tokenization_utils_base import (
SpecialTokensMixin, SpecialTokensMixin,
TensorType, TensorType,
TokenSpan, TokenSpan,
) )
# Integrations: this needs to come before other ml imports
# in order to allow any 3rd-party code to initialize properly
from .integrations import ( # isort:skip
is_comet_available,
is_optuna_available,
is_ray_available,
is_ray_tune_available,
is_tensorboard_available,
is_wandb_available,
)
# Trainer
from .trainer_callback import (
DefaultFlowCallback,
EarlyStoppingCallback,
PrinterCallback,
ProgressCallback,
TrainerCallback,
TrainerControl,
TrainerState,
)
from .trainer_utils import EvalPrediction, EvaluationStrategy, SchedulerType, set_seed
from .training_args import TrainingArguments
from .training_args_seq2seq import Seq2SeqTrainingArguments
from .training_args_tf import TFTrainingArguments
if is_sentencepiece_available(): if is_sentencepiece_available():
from .models.albert import AlbertTokenizer from .models.albert import AlbertTokenizer
from .models.barthez import BarthezTokenizer from .models.barthez import BarthezTokenizer
from .models.bert_generation import BertGenerationTokenizer from .models.bert_generation import BertGenerationTokenizer
...@@ -240,10 +1342,10 @@ if is_sentencepiece_available(): ...@@ -240,10 +1342,10 @@ if is_sentencepiece_available():
from .models.xlm_prophetnet import XLMProphetNetTokenizer from .models.xlm_prophetnet import XLMProphetNetTokenizer
from .models.xlm_roberta import XLMRobertaTokenizer from .models.xlm_roberta import XLMRobertaTokenizer
from .models.xlnet import XLNetTokenizer from .models.xlnet import XLNetTokenizer
else: else:
from .utils.dummy_sentencepiece_objects import * from .utils.dummy_sentencepiece_objects import *
if is_tokenizers_available(): if is_tokenizers_available():
from .models.albert import AlbertTokenizerFast from .models.albert import AlbertTokenizerFast
from .models.bart import BartTokenizerFast from .models.bart import BartTokenizerFast
from .models.barthez import BarthezTokenizerFast from .models.barthez import BarthezTokenizerFast
...@@ -276,31 +1378,11 @@ if is_tokenizers_available(): ...@@ -276,31 +1378,11 @@ if is_tokenizers_available():
if is_sentencepiece_available(): if is_sentencepiece_available():
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer
else: else:
from .utils.dummy_tokenizers_objects import * from .utils.dummy_tokenizers_objects import *
# Trainer # Modeling
from .trainer_callback import ( if is_torch_available():
DefaultFlowCallback,
EarlyStoppingCallback,
PrinterCallback,
ProgressCallback,
TrainerCallback,
TrainerControl,
TrainerState,
)
from .trainer_utils import EvalPrediction, EvaluationStrategy, SchedulerType, set_seed
from .training_args import TrainingArguments
from .training_args_seq2seq import Seq2SeqTrainingArguments
from .training_args_tf import TFTrainingArguments
from .utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Modeling
if is_torch_available():
# Benchmarks # Benchmarks
from .benchmark.benchmark import PyTorchBenchmark from .benchmark.benchmark import PyTorchBenchmark
...@@ -710,11 +1792,11 @@ if is_torch_available(): ...@@ -710,11 +1792,11 @@ if is_torch_available():
from .trainer import Trainer from .trainer import Trainer
from .trainer_pt_utils import torch_distributed_zero_first from .trainer_pt_utils import torch_distributed_zero_first
from .trainer_seq2seq import Seq2SeqTrainer from .trainer_seq2seq import Seq2SeqTrainer
else: else:
from .utils.dummy_pt_objects import * from .utils.dummy_pt_objects import *
# TensorFlow # TensorFlow
if is_tf_available(): if is_tf_available():
from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments
...@@ -973,21 +2055,43 @@ if is_tf_available(): ...@@ -973,21 +2055,43 @@ if is_tf_available():
# Trainer # Trainer
from .trainer_tf import TFTrainer from .trainer_tf import TFTrainer
else: else:
# Import the same objects as dummies to get them in the namespace. # Import the same objects as dummies to get them in the namespace.
# They will raise an import error if the user tries to instantiate / use them. # They will raise an import error if the user tries to instantiate / use them.
from .utils.dummy_tf_objects import * from .utils.dummy_tf_objects import *
if is_flax_available():
if is_flax_available():
from .modeling_flax_utils import FlaxPreTrainedModel from .modeling_flax_utils import FlaxPreTrainedModel
from .models.auto import FLAX_MODEL_MAPPING, FlaxAutoModel from .models.auto import FLAX_MODEL_MAPPING, FlaxAutoModel
from .models.bert import FlaxBertForMaskedLM, FlaxBertModel from .models.bert import FlaxBertForMaskedLM, FlaxBertModel
from .models.roberta import FlaxRobertaModel from .models.roberta import FlaxRobertaModel
else: else:
# Import the same objects as dummies to get them in the namespace. # Import the same objects as dummies to get them in the namespace.
# They will raise an import error if the user tries to instantiate / use them. # They will raise an import error if the user tries to instantiate / use them.
from .utils.dummy_flax_objects import * from .utils.dummy_flax_objects import *
else:
import importlib
import os
import sys
class _LazyModule(_BaseLazyModule):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
__file__ = globals()["__file__"]
__path__ = [os.path.dirname(__file__)]
def _get_module(self, module_name: str):
return importlib.import_module("." + module_name, self.__name__)
def __getattr__(self, name: str):
# Special handling for the version, which is a constant from this module and not imported in a submodule.
if name == "__version__":
return __version__
return super().__getattr__(name)
sys.modules[__name__] = _LazyModule(__name__, _import_structure)
if not is_tf_available() and not is_torch_available() and not is_flax_available(): if not is_tf_available() and not is_torch_available() and not is_flax_available():
......
...@@ -30,9 +30,8 @@ from multiprocessing import Pipe, Process, Queue ...@@ -30,9 +30,8 @@ from multiprocessing import Pipe, Process, Queue
from multiprocessing.connection import Connection from multiprocessing.connection import Connection
from typing import Callable, Iterable, List, NamedTuple, Optional, Union from typing import Callable, Iterable, List, NamedTuple, Optional, Union
from transformers import AutoConfig, PretrainedConfig from .. import AutoConfig, PretrainedConfig
from transformers import __version__ as version from .. import __version__ as version
from ..file_utils import is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available from ..file_utils import is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available
from ..utils import logging from ..utils import logging
from .benchmark_args_utils import BenchmarkArguments from .benchmark_args_utils import BenchmarkArguments
......
...@@ -19,9 +19,8 @@ from argparse import ArgumentParser, Namespace ...@@ -19,9 +19,8 @@ from argparse import ArgumentParser, Namespace
from pathlib import Path from pathlib import Path
from typing import List from typing import List
from transformers.commands import BaseTransformersCLICommand
from ..utils import logging from ..utils import logging
from . import BaseTransformersCLICommand
try: try:
......
...@@ -14,9 +14,8 @@ ...@@ -14,9 +14,8 @@
from argparse import ArgumentParser, Namespace from argparse import ArgumentParser, Namespace
from transformers.commands import BaseTransformersCLICommand
from ..utils import logging from ..utils import logging
from . import BaseTransformersCLICommand
def convert_command_factory(args: Namespace): def convert_command_factory(args: Namespace):
...@@ -87,7 +86,7 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -87,7 +86,7 @@ class ConvertCommand(BaseTransformersCLICommand):
def run(self): def run(self):
if self._model_type == "albert": if self._model_type == "albert":
try: try:
from transformers.models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch, convert_tf_checkpoint_to_pytorch,
) )
except ImportError: except ImportError:
...@@ -96,7 +95,7 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -96,7 +95,7 @@ class ConvertCommand(BaseTransformersCLICommand):
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "bert": elif self._model_type == "bert":
try: try:
from transformers.models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch, convert_tf_checkpoint_to_pytorch,
) )
except ImportError: except ImportError:
...@@ -105,7 +104,7 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -105,7 +104,7 @@ class ConvertCommand(BaseTransformersCLICommand):
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "funnel": elif self._model_type == "funnel":
try: try:
from transformers.models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch, convert_tf_checkpoint_to_pytorch,
) )
except ImportError: except ImportError:
...@@ -113,14 +112,14 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -113,14 +112,14 @@ class ConvertCommand(BaseTransformersCLICommand):
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "gpt": elif self._model_type == "gpt":
from transformers.models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch, convert_openai_checkpoint_to_pytorch,
) )
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "transfo_xl": elif self._model_type == "transfo_xl":
try: try:
from transformers.models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch, convert_transfo_xl_checkpoint_to_pytorch,
) )
except ImportError: except ImportError:
...@@ -137,7 +136,7 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -137,7 +136,7 @@ class ConvertCommand(BaseTransformersCLICommand):
) )
elif self._model_type == "gpt2": elif self._model_type == "gpt2":
try: try:
from transformers.models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import ( from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
convert_gpt2_checkpoint_to_pytorch, convert_gpt2_checkpoint_to_pytorch,
) )
except ImportError: except ImportError:
...@@ -146,7 +145,7 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -146,7 +145,7 @@ class ConvertCommand(BaseTransformersCLICommand):
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output) convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
elif self._model_type == "xlnet": elif self._model_type == "xlnet":
try: try:
from transformers.models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch, convert_xlnet_checkpoint_to_pytorch,
) )
except ImportError: except ImportError:
...@@ -156,13 +155,13 @@ class ConvertCommand(BaseTransformersCLICommand): ...@@ -156,13 +155,13 @@ class ConvertCommand(BaseTransformersCLICommand):
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
) )
elif self._model_type == "xlm": elif self._model_type == "xlm":
from transformers.models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch, convert_xlm_checkpoint_to_pytorch,
) )
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
elif self._model_type == "lxmert": elif self._model_type == "lxmert":
from transformers.models.lxmert.convert_lxmert_original_pytorch_checkpoint_to_pytorch import ( from ..models.lxmert.convert_lxmert_original_pytorch_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch, convert_lxmert_checkpoint_to_pytorch,
) )
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
from argparse import ArgumentParser from argparse import ArgumentParser
from transformers.commands import BaseTransformersCLICommand from . import BaseTransformersCLICommand
def download_command_factory(args): def download_command_factory(args):
...@@ -40,7 +40,7 @@ class DownloadCommand(BaseTransformersCLICommand): ...@@ -40,7 +40,7 @@ class DownloadCommand(BaseTransformersCLICommand):
self._force = force self._force = force
def run(self): def run(self):
from transformers import AutoModel, AutoTokenizer from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force) AutoModel.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force)
AutoTokenizer.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force) AutoTokenizer.from_pretrained(self._model, cache_dir=self._cache, force_download=self._force)
...@@ -15,9 +15,9 @@ ...@@ -15,9 +15,9 @@
import platform import platform
from argparse import ArgumentParser from argparse import ArgumentParser
from transformers import __version__ as version from .. import __version__ as version
from transformers import is_tf_available, is_torch_available from ..file_utils import is_tf_available, is_torch_available
from transformers.commands import BaseTransformersCLICommand from . import BaseTransformersCLICommand
def info_command_factory(_): def info_command_factory(_):
......
...@@ -25,9 +25,9 @@ from contextlib import AbstractContextManager ...@@ -25,9 +25,9 @@ from contextlib import AbstractContextManager
from typing import Dict, List, Optional from typing import Dict, List, Optional
import requests import requests
from transformers.commands import BaseTransformersCLICommand
from ..utils import logging from ..utils import logging
from . import BaseTransformersCLICommand
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......
...@@ -14,10 +14,9 @@ ...@@ -14,10 +14,9 @@
from argparse import ArgumentParser from argparse import ArgumentParser
from transformers.commands import BaseTransformersCLICommand from ..pipelines import SUPPORTED_TASKS, Pipeline, PipelineDataFormat, pipeline
from transformers.pipelines import SUPPORTED_TASKS, Pipeline, PipelineDataFormat, pipeline
from ..utils import logging from ..utils import logging
from . import BaseTransformersCLICommand
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......
...@@ -15,11 +15,9 @@ ...@@ -15,11 +15,9 @@
from argparse import ArgumentParser, Namespace from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional from typing import Any, List, Optional
from transformers import Pipeline from ..pipelines import SUPPORTED_TASKS, Pipeline, pipeline
from transformers.commands import BaseTransformersCLICommand
from transformers.pipelines import SUPPORTED_TASKS, pipeline
from ..utils import logging from ..utils import logging
from . import BaseTransformersCLICommand
try: try:
......
...@@ -15,11 +15,11 @@ ...@@ -15,11 +15,11 @@
import os import os
from argparse import ArgumentParser, Namespace from argparse import ArgumentParser, Namespace
from transformers import SingleSentenceClassificationProcessor as Processor from ..data import SingleSentenceClassificationProcessor as Processor
from transformers import TextClassificationPipeline, is_tf_available, is_torch_available from ..file_utils import is_tf_available, is_torch_available
from transformers.commands import BaseTransformersCLICommand from ..pipelines import TextClassificationPipeline
from ..utils import logging from ..utils import logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available(): if not is_tf_available() and not is_torch_available():
......
...@@ -15,14 +15,14 @@ ...@@ -15,14 +15,14 @@
from argparse import ArgumentParser from argparse import ArgumentParser
from transformers.commands.add_new_model import AddNewModelCommand from .add_new_model import AddNewModelCommand
from transformers.commands.convert import ConvertCommand from .convert import ConvertCommand
from transformers.commands.download import DownloadCommand from .download import DownloadCommand
from transformers.commands.env import EnvironmentCommand from .env import EnvironmentCommand
from transformers.commands.lfs import LfsCommands from .lfs import LfsCommands
from transformers.commands.run import RunCommand from .run import RunCommand
from transformers.commands.serving import ServeCommand from .serving import ServeCommand
from transformers.commands.user import UserCommands from .user import UserCommands
def main(): def main():
......
...@@ -20,8 +20,9 @@ from getpass import getpass ...@@ -20,8 +20,9 @@ from getpass import getpass
from typing import List, Union from typing import List, Union
from requests.exceptions import HTTPError from requests.exceptions import HTTPError
from transformers.commands import BaseTransformersCLICommand
from transformers.hf_api import HfApi, HfFolder from ..hf_api import HfApi, HfFolder
from . import BaseTransformersCLICommand
UPLOAD_MAX_FILES = 15 UPLOAD_MAX_FILES = 15
......
...@@ -19,10 +19,9 @@ from typing import Dict, List, Optional, Tuple ...@@ -19,10 +19,9 @@ from typing import Dict, List, Optional, Tuple
from packaging.version import Version, parse from packaging.version import Version, parse
from transformers import is_tf_available, is_torch_available from .file_utils import ModelOutput, is_tf_available, is_torch_available
from transformers.file_utils import ModelOutput from .pipelines import Pipeline, pipeline
from transformers.pipelines import Pipeline, pipeline from .tokenization_utils import BatchEncoding
from transformers.tokenization_utils import BatchEncoding
# This is the minimal required version to # This is the minimal required version to
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
import argparse import argparse
import os import os
from transformers import ( from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST, BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
...@@ -87,15 +87,15 @@ from transformers import ( ...@@ -87,15 +87,15 @@ from transformers import (
is_torch_available, is_torch_available,
load_pytorch_checkpoint_in_tf2_model, load_pytorch_checkpoint_in_tf2_model,
) )
from transformers.file_utils import hf_bucket_url from .file_utils import hf_bucket_url
from transformers.utils import logging from .utils import logging
if is_torch_available(): if is_torch_available():
import numpy as np import numpy as np
import torch import torch
from transformers import ( from . import (
AlbertForPreTraining, AlbertForPreTraining,
BartForConditionalGeneration, BartForConditionalGeneration,
BertForPreTraining, BertForPreTraining,
......
...@@ -18,8 +18,9 @@ import argparse ...@@ -18,8 +18,9 @@ import argparse
import os import os
import transformers import transformers
from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from transformers.utils import logging from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info() logging.set_verbosity_info()
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
import argparse import argparse
from transformers import ( from . import (
BertConfig, BertConfig,
BertGenerationConfig, BertGenerationConfig,
BertGenerationDecoder, BertGenerationDecoder,
......
...@@ -27,8 +27,7 @@ import math ...@@ -27,8 +27,7 @@ import math
import re import re
import string import string
from transformers import BasicTokenizer from ...models.bert import BasicTokenizer
from ...utils import logging from ...utils import logging
......
...@@ -17,15 +17,14 @@ import unittest ...@@ -17,15 +17,14 @@ import unittest
import timeout_decorator import timeout_decorator
from transformers import is_torch_available from ..file_utils import cached_property, is_torch_available
from transformers.file_utils import cached_property from ..testing_utils import require_torch
from transformers.testing_utils import require_torch
if is_torch_available(): if is_torch_available():
import torch import torch
from transformers import MarianConfig, MarianMTModel from ..models.marian import MarianConfig, MarianMTModel
@require_torch @require_torch
......
...@@ -33,6 +33,7 @@ from dataclasses import fields ...@@ -33,6 +33,7 @@ from dataclasses import fields
from functools import partial, wraps from functools import partial, wraps
from hashlib import sha256 from hashlib import sha256
from pathlib import Path from pathlib import Path
from types import ModuleType
from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union
from urllib.parse import urlparse from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile from zipfile import ZipFile, is_zipfile
...@@ -41,7 +42,6 @@ import numpy as np ...@@ -41,7 +42,6 @@ import numpy as np
from packaging import version from packaging import version
from tqdm.auto import tqdm from tqdm.auto import tqdm
import importlib_metadata
import requests import requests
from filelock import FileLock from filelock import FileLock
...@@ -50,6 +50,13 @@ from .hf_api import HfFolder ...@@ -50,6 +50,13 @@ from .hf_api import HfFolder
from .utils import logging from .utils import logging
# The package importlib_metadata is in a different place, depending on the python version.
if version.parse(sys.version) < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES"} ENV_VARS_TRUE_VALUES = {"1", "ON", "YES"}
...@@ -130,7 +137,7 @@ except importlib_metadata.PackageNotFoundError: ...@@ -130,7 +137,7 @@ except importlib_metadata.PackageNotFoundError:
_scatter_available = importlib.util.find_spec("torch_scatter") is not None _scatter_available = importlib.util.find_spec("torch_scatter") is not None
try: try:
_scatter_version = importlib_metadata.version("torch_scatterr") _scatter_version = importlib_metadata.version("torch_scatter")
logger.debug(f"Successfully imported torch-scatter version {_scatter_version}") logger.debug(f"Successfully imported torch-scatter version {_scatter_version}")
except importlib_metadata.PackageNotFoundError: except importlib_metadata.PackageNotFoundError:
_scatter_available = False _scatter_available = False
...@@ -1415,3 +1422,40 @@ class ModelOutput(OrderedDict): ...@@ -1415,3 +1422,40 @@ class ModelOutput(OrderedDict):
Convert self to a tuple containing all the attributes/keys that are not ``None``. Convert self to a tuple containing all the attributes/keys that are not ``None``.
""" """
return tuple(self[k] for k in self.keys()) return tuple(self[k] for k in self.keys())
class _BaseLazyModule(ModuleType):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
# Very heavily inspired by optuna.integration._IntegrationModule
# https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
def __init__(self, name, import_structure):
super().__init__(name)
self._modules = set(import_structure.keys())
self._class_to_module = {}
for key, values in import_structure.items():
for value in values:
self._class_to_module[value] = key
# Needed for autocompletion in an IDE
self.__all__ = list(import_structure.keys()) + sum(import_structure.values(), [])
# Needed for autocompletion in an IDE
def __dir__(self):
return super().__dir__() + self.__all__
def __getattr__(self, name: str) -> Any:
if name in self._modules:
value = self._get_module(name)
elif name in self._class_to_module.keys():
module = self._get_module(self._class_to_module[name])
value = getattr(module, name)
else:
raise AttributeError(f"module {self.__name__} has no attribute {name}")
setattr(self, name, value)
return value
def _get_module(self, module_name: str) -> ModuleType:
raise NotImplementedError
...@@ -29,7 +29,7 @@ logger = logging.get_logger(__name__) ...@@ -29,7 +29,7 @@ logger = logging.get_logger(__name__)
# comet_ml requires to be imported before any ML frameworks # comet_ml requires to be imported before any ML frameworks
_has_comet = importlib.util.find_spec("comet_ml") and os.getenv("COMET_MODE", "").upper() != "DISABLED" _has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
if _has_comet: if _has_comet:
try: try:
import comet_ml # noqa: F401 import comet_ml # noqa: F401
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment