Unverified Commit 72728be3 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[DocTests] Fix some doc tests (#16889)

* [DocTests] Fix some doc tests

* hacky fix

* correct
parent 22fc93c4
......@@ -252,10 +252,9 @@ The example above only shows a single example. You can also do batched inference
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> task_prefix = "translate English to German: "
>>> sentences = [
... "The house is wonderful.",
... "I like to work in NYC.",
>>> ] # use different length sentences to test batching
>>> # use different length sentences to test batching
>>> sentences = ["The house is wonderful.", "I like to work in NYC."]
>>> inputs = tokenizer([task_prefix + sentence for sentence in sentences], return_tensors="pt", padding=True)
>>> output_sequences = model.generate(
......
......@@ -1210,14 +1210,14 @@ class BeitForSemanticSegmentation(BeitPreTrainedModel):
Examples:
```python
>>> from transformers import BeitFeatureExtractor, BeitForSemanticSegmentation
>>> from transformers import AutoFeatureExtractor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = feature_extractor(images=image, return_tensors="pt")
......
......@@ -1140,14 +1140,14 @@ class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel):
Examples:
```python
>>> from transformers import Data2VecVisionFeatureExtractor, Data2VecVisionForSemanticSegmentation
>>> from transformers import AutoFeatureExtractor, Data2VecVisionForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = Data2VecVisionFeatureExtractor.from_pretrained("facebook/data2vec-vision-base")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/data2vec-vision-base")
>>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base")
>>> inputs = feature_extractor(images=image, return_tensors="pt")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment