Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
72728be3
Unverified
Commit
72728be3
authored
Apr 23, 2022
by
Patrick von Platen
Committed by
GitHub
Apr 23, 2022
Browse files
[DocTests] Fix some doc tests (#16889)
* [DocTests] Fix some doc tests * hacky fix * correct
parent
22fc93c4
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
7 additions
and
8 deletions
+7
-8
docs/source/en/model_doc/t5.mdx
docs/source/en/model_doc/t5.mdx
+3
-4
src/transformers/models/beit/modeling_beit.py
src/transformers/models/beit/modeling_beit.py
+2
-2
src/transformers/models/data2vec/modeling_data2vec_vision.py
src/transformers/models/data2vec/modeling_data2vec_vision.py
+2
-2
No files found.
docs/source/en/model_doc/t5.mdx
View file @
72728be3
...
...
@@ -252,10 +252,9 @@ The example above only shows a single example. You can also do batched inference
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> task_prefix = "translate English to German: "
>>> sentences = [
... "The house is wonderful.",
... "I like to work in NYC.",
>>> ] # use different length sentences to test batching
>>> # use different length sentences to test batching
>>> sentences = ["The house is wonderful.", "I like to work in NYC."]
>>> inputs = tokenizer([task_prefix + sentence for sentence in sentences], return_tensors="pt", padding=True)
>>> output_sequences = model.generate(
...
...
src/transformers/models/beit/modeling_beit.py
View file @
72728be3
...
...
@@ -1210,14 +1210,14 @@ class BeitForSemanticSegmentation(BeitPreTrainedModel):
Examples:
```python
>>> from transformers import
Beit
FeatureExtractor, BeitForSemanticSegmentation
>>> from transformers import
Auto
FeatureExtractor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor =
Beit
FeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> feature_extractor =
Auto
FeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = feature_extractor(images=image, return_tensors="pt")
...
...
src/transformers/models/data2vec/modeling_data2vec_vision.py
View file @
72728be3
...
...
@@ -1140,14 +1140,14 @@ class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel):
Examples:
```python
>>> from transformers import
Data2VecVision
FeatureExtractor, Data2VecVisionForSemanticSegmentation
>>> from transformers import
Auto
FeatureExtractor, Data2VecVisionForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor =
Data2VecVision
FeatureExtractor.from_pretrained("facebook/data2vec-vision-base")
>>> feature_extractor =
Auto
FeatureExtractor.from_pretrained("facebook/data2vec-vision-base")
>>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base")
>>> inputs = feature_extractor(images=image, return_tensors="pt")
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment