Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
7246785a
Unverified
Commit
7246785a
authored
Feb 17, 2021
by
Julien Plu
Committed by
GitHub
Feb 17, 2021
Browse files
Make TF CTRL compliant with XLA and AMP (#10209)
* Fix XLA and AMP * Apply style * Remove useless cast
parent
fdb2351e
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
33 deletions
+18
-33
src/transformers/models/ctrl/modeling_tf_ctrl.py
src/transformers/models/ctrl/modeling_tf_ctrl.py
+18
-25
tests/test_modeling_tf_ctrl.py
tests/test_modeling_tf_ctrl.py
+0
-8
No files found.
src/transformers/models/ctrl/modeling_tf_ctrl.py
View file @
7246785a
...
@@ -48,7 +48,7 @@ TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [
...
@@ -48,7 +48,7 @@ TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [
def
angle_defn
(
pos
,
i
,
d_model_size
):
def
angle_defn
(
pos
,
i
,
d_model_size
):
angle_rates
=
1
/
np
.
power
(
10000
,
(
2
*
(
i
//
2
))
/
np
.
float32
(
d_model_size
)
)
angle_rates
=
1
/
np
.
power
(
10000
,
(
2
*
(
i
//
2
))
/
d_model_size
)
return
pos
*
angle_rates
return
pos
*
angle_rates
...
@@ -58,9 +58,8 @@ def positional_encoding(position, d_model_size):
...
@@ -58,9 +58,8 @@ def positional_encoding(position, d_model_size):
sines
=
np
.
sin
(
angle_rads
[:,
0
::
2
])
sines
=
np
.
sin
(
angle_rads
[:,
0
::
2
])
cosines
=
np
.
cos
(
angle_rads
[:,
1
::
2
])
cosines
=
np
.
cos
(
angle_rads
[:,
1
::
2
])
pos_encoding
=
tf
.
convert_to_tensor
(
np
.
concatenate
([
sines
,
cosines
],
axis
=-
1
))
# pos_encoding = tf.cast(np.concatenate([sines, cosines], axis=-1)[np.newaxis, ...], dtype=tf.float32)
pos_encoding
=
tf
.
cast
(
np
.
concatenate
([
sines
,
cosines
],
axis
=-
1
),
dtype
=
tf
.
float32
)
return
pos_encoding
return
pos_encoding
...
@@ -68,14 +67,15 @@ def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=N
...
@@ -68,14 +67,15 @@ def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=N
# calculate attention
# calculate attention
matmul_qk
=
tf
.
matmul
(
q
,
k
,
transpose_b
=
True
)
matmul_qk
=
tf
.
matmul
(
q
,
k
,
transpose_b
=
True
)
dk
=
tf
.
cast
(
shape_list
(
k
)[
-
1
],
tf
.
float32
)
dk
=
tf
.
cast
(
shape_list
(
k
)[
-
1
],
dtype
=
matmul_qk
.
dtype
)
scaled_attention_logits
=
matmul_qk
/
tf
.
math
.
sqrt
(
dk
)
scaled_attention_logits
=
matmul_qk
/
tf
.
math
.
sqrt
(
dk
)
if
mask
is
not
None
:
if
mask
is
not
None
:
scaled_attention_logits
+=
mask
*
-
1e4
scaled_attention_logits
+=
tf
.
cast
(
mask
*
-
1e4
,
dtype
=
scaled_attention_logits
.
dtype
)
if
attention_mask
is
not
None
:
if
attention_mask
is
not
None
:
# Apply the attention mask
# Apply the attention mask
attention_mask
=
tf
.
cast
(
attention_mask
,
dtype
=
scaled_attention_logits
.
dtype
)
scaled_attention_logits
=
scaled_attention_logits
+
attention_mask
scaled_attention_logits
=
scaled_attention_logits
+
attention_mask
attention_weights
=
tf
.
nn
.
softmax
(
scaled_attention_logits
,
axis
=-
1
)
attention_weights
=
tf
.
nn
.
softmax
(
scaled_attention_logits
,
axis
=-
1
)
...
@@ -332,10 +332,10 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
...
@@ -332,10 +332,10 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
# Since we are adding it to the raw scores before the softmax, this is
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
# effectively the same as removing these entirely.
inputs
[
"attention_mask"
]
=
tf
.
cast
(
inputs
[
"attention_mask"
],
tf
.
float32
)
one_cst
=
tf
.
constant
(
1.0
)
inputs
[
"attention_mask"
]
=
(
1.0
-
inputs
[
"attention_mask"
])
*
-
10000.0
ten_thousand_cst
=
tf
.
constant
(
-
10000.0
)
else
:
inputs
[
"attention_mask"
]
=
tf
.
cast
(
inputs
[
"attention_mask"
],
dtype
=
one_cst
.
dtype
)
inputs
[
"attention_mask"
]
=
None
inputs
[
"attention_mask"
]
=
tf
.
multiply
(
tf
.
subtract
(
one_cst
,
inputs
[
"attention_mask"
]),
ten_thousand_cst
)
# Prepare head mask if needed
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# 1.0 in head_mask indicate we keep the head
...
@@ -351,9 +351,9 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
...
@@ -351,9 +351,9 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
inputs
[
"token_type_ids"
],
[
-
1
,
shape_list
(
inputs
[
"token_type_ids"
])[
-
1
]]
inputs
[
"token_type_ids"
],
[
-
1
,
shape_list
(
inputs
[
"token_type_ids"
])[
-
1
]]
)
)
token_type_embeds
=
self
.
w
(
inputs
[
"token_type_ids"
],
mode
=
"embedding"
)
token_type_embeds
=
self
.
w
(
inputs
[
"token_type_ids"
],
mode
=
"embedding"
)
token_type_embeds
*=
tf
.
math
.
sqrt
(
tf
.
cast
(
self
.
d_model_size
,
tf
.
float32
))
token_type_embeds
*=
tf
.
math
.
sqrt
(
tf
.
cast
(
self
.
d_model_size
,
dtype
=
token_type_embeds
.
dtype
))
else
:
else
:
token_type_embeds
=
0
token_type_embeds
=
tf
.
constant
(
0.0
)
inputs
[
"position_ids"
]
=
tf
.
reshape
(
inputs
[
"position_ids"
],
[
-
1
,
shape_list
(
inputs
[
"position_ids"
])[
-
1
]])
inputs
[
"position_ids"
]
=
tf
.
reshape
(
inputs
[
"position_ids"
],
[
-
1
,
shape_list
(
inputs
[
"position_ids"
])[
-
1
]])
if
inputs
[
"inputs_embeds"
]
is
None
:
if
inputs
[
"inputs_embeds"
]
is
None
:
...
@@ -361,10 +361,10 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
...
@@ -361,10 +361,10 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
seq_len
=
input_shape
[
-
1
]
seq_len
=
input_shape
[
-
1
]
mask
=
1
-
tf
.
linalg
.
band_part
(
tf
.
ones
((
seq_len
,
seq_len
)),
-
1
,
0
)
mask
=
1
-
tf
.
linalg
.
band_part
(
tf
.
ones
((
seq_len
,
seq_len
)),
-
1
,
0
)
inputs
[
"inputs_embeds"
]
*=
tf
.
math
.
sqrt
(
tf
.
cast
(
self
.
d_model_size
,
tf
.
float32
))
inputs
[
"inputs_embeds"
]
*=
tf
.
math
.
sqrt
(
tf
.
cast
(
self
.
d_model_size
,
inputs
[
"inputs_embeds"
].
dtype
))
pos_embeds
=
tf
.
gather
(
self
.
pos_encoding
,
inputs
[
"position_ids"
])
pos_embeds
=
tf
.
gather
(
self
.
pos_encoding
,
inputs
[
"position_ids"
])
pos_embeds
=
tf
.
cast
(
pos_embeds
,
dtype
=
token_type_embeds
.
dtype
)
hidden_states
=
inputs
[
"inputs_embeds"
]
+
pos_embeds
+
token_type_embeds
hidden_states
=
inputs
[
"inputs_embeds"
]
+
pos_embeds
+
token_type_embeds
hidden_states
=
self
.
dropout
(
hidden_states
,
training
=
inputs
[
"training"
])
hidden_states
=
self
.
dropout
(
hidden_states
,
training
=
inputs
[
"training"
])
...
@@ -857,7 +857,6 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
...
@@ -857,7 +857,6 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
hidden_states
=
transformer_outputs
[
0
]
hidden_states
=
transformer_outputs
[
0
]
logits
=
self
.
classifier
(
hidden_states
)
logits
=
self
.
classifier
(
hidden_states
)
logits_shape
=
shape_list
(
logits
)
in_logits
=
None
in_logits
=
None
if
self
.
config
.
pad_token_id
is
None
:
if
self
.
config
.
pad_token_id
is
None
:
sequence_lengths
=
-
1
sequence_lengths
=
-
1
...
@@ -865,22 +864,16 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
...
@@ -865,22 +864,16 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
if
inputs
[
"input_ids"
]
is
not
None
:
if
inputs
[
"input_ids"
]
is
not
None
:
sequence_lengths
=
(
sequence_lengths
=
(
tf
.
reduce_sum
(
tf
.
reduce_sum
(
tf
.
cast
(
tf
.
math
.
not_equal
(
inputs
[
"input_ids"
],
self
.
config
.
pad_token_id
),
tf
.
int32
),
tf
.
cast
(
tf
.
math
.
not_equal
(
inputs
[
"input_ids"
],
self
.
config
.
pad_token_id
),
dtype
=
inputs
[
"input_ids"
].
dtype
,
),
-
1
,
-
1
,
keepdims
=
False
,
keepdims
=
False
,
)
)
-
1
-
1
)
)
in_logits
=
tf
.
gather
(
logits
,
sequence_lengths
,
batch_dims
=
1
,
axis
=
1
)
def
get_seq_element
(
sequence_position
,
input_batch
):
return
tf
.
strided_slice
(
input_batch
,
[
sequence_position
,
0
],
[
sequence_position
+
1
,
input_batch
.
shape
[
-
1
]],
[
1
,
1
]
)
result
=
tf
.
map_fn
(
fn
=
lambda
t
:
get_seq_element
(
t
[
0
],
t
[
1
]),
elems
=
[
sequence_lengths
,
logits
],
dtype
=
"float"
)
in_logits
=
tf
.
reshape
(
result
,
[
logits_shape
[
0
],
logits_shape
[
-
1
]])
else
:
else
:
sequence_lengths
=
-
1
sequence_lengths
=
-
1
logger
.
warning
(
logger
.
warning
(
...
...
tests/test_modeling_tf_ctrl.py
View file @
7246785a
...
@@ -222,14 +222,6 @@ class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
...
@@ -222,14 +222,6 @@ class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
name
=
model
.
get_bias
()
name
=
model
.
get_bias
()
assert
name
is
None
assert
name
is
None
def
test_mixed_precision
(
self
):
# TODO JP: Make CTRL float16 compliant
pass
def
test_xla_mode
(
self
):
# TODO JP: Make CTRL XLA compliant
pass
@
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
for
model_name
in
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
for
model_name
in
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment