"tests/vscode:/vscode.git/clone" did not exist on "be41eaf55feab433d5454c14127e642d85693dc4"
Unverified Commit 7152ed2b authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Result of new doc style with fixes (#17015)

* Result of new doc style with fixes

* Add last two files

* Bump hf-doc-builder
parent 18df4407
...@@ -1068,7 +1068,7 @@ class TapasForMaskedLM(TapasPreTrainedModel): ...@@ -1068,7 +1068,7 @@ class TapasForMaskedLM(TapasPreTrainedModel):
... ) ... )
>>> labels = tokenizer( >>> labels = tokenizer(
... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt" ... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt"
>>> )["input_ids"] ... )["input_ids"]
>>> outputs = model(**inputs, labels=labels) >>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits >>> logits = outputs.logits
......
...@@ -1095,7 +1095,7 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss): ...@@ -1095,7 +1095,7 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
... ) ... )
>>> labels = tokenizer( >>> labels = tokenizer(
... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf" ... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf"
>>> )["input_ids"] ... )["input_ids"]
>>> outputs = model(**inputs, labels=labels) >>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits >>> logits = outputs.logits
......
...@@ -326,7 +326,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos ...@@ -326,7 +326,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
>>> output_ids = model.generate( >>> output_ids = model.generate(
... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True ... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True
>>> ).sequences ... ).sequences
>>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) >>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
>>> preds = [pred.strip() for pred in preds] >>> preds = [pred.strip() for pred in preds]
......
...@@ -1081,7 +1081,7 @@ FLAX_WAV2VEC2_MODEL_DOCSTRING = """ ...@@ -1081,7 +1081,7 @@ FLAX_WAV2VEC2_MODEL_DOCSTRING = """
>>> input_values = processor( >>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
>>> ).input_values # Batch size 1 ... ).input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state >>> hidden_states = model(input_values).last_hidden_state
``` ```
""" """
...@@ -1200,7 +1200,7 @@ FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """ ...@@ -1200,7 +1200,7 @@ FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """
>>> input_values = processor( >>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
>>> ).input_values # Batch size 1 ... ).input_values # Batch size 1
>>> logits = model(input_values).logits >>> logits = model(input_values).logits
>>> predicted_ids = jnp.argmax(logits, axis=-1) >>> predicted_ids = jnp.argmax(logits, axis=-1)
......
...@@ -1039,7 +1039,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel): ...@@ -1039,7 +1039,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0 ... 0
>>> ) # Batch size 1 ... ) # Batch size 1
>>> start_positions = torch.tensor([1]) >>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3]) >>> end_positions = torch.tensor([3])
......
...@@ -98,7 +98,7 @@ class XLMProphetNetModel(ProphetNetModel): ...@@ -98,7 +98,7 @@ class XLMProphetNetModel(ProphetNetModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
...@@ -124,7 +124,7 @@ class XLMProphetNetForConditionalGeneration(ProphetNetForConditionalGeneration): ...@@ -124,7 +124,7 @@ class XLMProphetNetForConditionalGeneration(ProphetNetForConditionalGeneration):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
......
...@@ -1281,17 +1281,17 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): ...@@ -1281,17 +1281,17 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
>>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[ >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[
... None, : ... None, :
>>> ] # We will predict the masked token ... ] # We will predict the masked token
>>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1]))
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = np.zeros( >>> target_mapping = np.zeros(
... (1, 1, input_ids.shape[1]) ... (1, 1, input_ids.shape[1])
>>> ) # Shape [1, 1, seq_length] => let's predict one token ... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[ >>> target_mapping[
... 0, 0, -1 ... 0, 0, -1
>>> ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model( >>> outputs = model(
... input_ids, ... input_ids,
...@@ -1301,7 +1301,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): ...@@ -1301,7 +1301,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
>>> next_token_logits = outputs[ >>> next_token_logits = outputs[
... 0 ... 0
>>> ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```""" ```"""
transformer_outputs = self.transformer( transformer_outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
......
...@@ -1400,47 +1400,47 @@ class XLNetLMHeadModel(XLNetPreTrainedModel): ...@@ -1400,47 +1400,47 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
>>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor( >>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
>>> ).unsqueeze( ... ).unsqueeze(
... 0 ... 0
>>> ) # We will predict the masked token ... ) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros( >>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float ... (1, 1, input_ids.shape[1]), dtype=torch.float
>>> ) # Shape [1, 1, seq_length] => let's predict one token ... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[ >>> target_mapping[
... 0, 0, -1 ... 0, 0, -1
>>> ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[ >>> next_token_logits = outputs[
... 0 ... 0
>>> ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling. >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor( >>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
>>> ).unsqueeze( ... ).unsqueeze(
... 0 ... 0
>>> ) # We will predict the masked token ... ) # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0) >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted" >>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[ >>> perm_mask[
... :, :, -1 ... :, :, -1
>>> ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training ... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros( >>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float ... (1, 1, input_ids.shape[1]), dtype=torch.float
>>> ) # Shape [1, 1, seq_length] => let's predict one token ... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[ >>> target_mapping[
... 0, 0, -1 ... 0, 0, -1
>>> ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss >>> loss = outputs.loss
>>> next_token_logits = ( >>> next_token_logits = (
... outputs.logits ... outputs.logits
>>> ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
...@@ -1980,7 +1980,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel): ...@@ -1980,7 +1980,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0 ... 0
>>> ) # Batch size 1 ... ) # Batch size 1
>>> start_positions = torch.tensor([1]) >>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3]) >>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment