Unverified Commit 7130a22d authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

Generate: consistently handle special tokens as tensors (#30624)



* tmp commit

* [test_all] mvp

* missing not

* [test_all] final test fixes

* fix musicgen_melody and rag

* [test_all] empty commit

* PR comments

* Update src/transformers/generation/utils.py
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

---------
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
parent 5413b898
...@@ -218,8 +218,8 @@ class BeamSearchScorer(BeamScorer): ...@@ -218,8 +218,8 @@ class BeamSearchScorer(BeamScorer):
next_scores: torch.FloatTensor, next_scores: torch.FloatTensor,
next_tokens: torch.LongTensor, next_tokens: torch.LongTensor,
next_indices: torch.LongTensor, next_indices: torch.LongTensor,
pad_token_id: Optional[int] = None, pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int]]] = None, eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None, beam_indices: Optional[torch.LongTensor] = None,
group_index: Optional[int] = 0, group_index: Optional[int] = 0,
decoder_prompt_len: Optional[int] = 0, decoder_prompt_len: Optional[int] = 0,
...@@ -245,8 +245,10 @@ class BeamSearchScorer(BeamScorer): ...@@ -245,8 +245,10 @@ class BeamSearchScorer(BeamScorer):
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
if isinstance(eos_token_id, int): if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
for batch_idx in range(batch_size): for batch_idx in range(batch_size):
batch_group_idx = batch_idx * self.num_beam_groups + group_index batch_group_idx = batch_idx * self.num_beam_groups + group_index
...@@ -322,15 +324,17 @@ class BeamSearchScorer(BeamScorer): ...@@ -322,15 +324,17 @@ class BeamSearchScorer(BeamScorer):
final_beam_tokens: torch.LongTensor, final_beam_tokens: torch.LongTensor,
final_beam_indices: torch.LongTensor, final_beam_indices: torch.LongTensor,
max_length: int, max_length: int,
pad_token_id: Optional[int] = None, pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int]]] = None, eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None, beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0, decoder_prompt_len: Optional[int] = 0,
) -> Tuple[torch.LongTensor]: ) -> Tuple[torch.LongTensor]:
batch_size = len(self._beam_hyps) // self.num_beam_groups batch_size = len(self._beam_hyps) // self.num_beam_groups
if isinstance(eos_token_id, int): if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
# finalize all open beam hypotheses and add to generated hypotheses # finalize all open beam hypotheses and add to generated hypotheses
for batch_group_idx, beam_hyp in enumerate(self._beam_hyps): for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
...@@ -513,8 +517,8 @@ class ConstrainedBeamSearchScorer(BeamScorer): ...@@ -513,8 +517,8 @@ class ConstrainedBeamSearchScorer(BeamScorer):
next_tokens: torch.LongTensor, next_tokens: torch.LongTensor,
next_indices: torch.LongTensor, next_indices: torch.LongTensor,
scores_for_all_vocab: torch.FloatTensor, scores_for_all_vocab: torch.FloatTensor,
pad_token_id: Optional[int] = None, pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int]]] = None, eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None, beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0, decoder_prompt_len: Optional[int] = 0,
) -> Tuple[torch.Tensor]: ) -> Tuple[torch.Tensor]:
...@@ -578,8 +582,10 @@ class ConstrainedBeamSearchScorer(BeamScorer): ...@@ -578,8 +582,10 @@ class ConstrainedBeamSearchScorer(BeamScorer):
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device) next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device) next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
if isinstance(eos_token_id, int): if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
for batch_idx, beam_hyp in enumerate(self._beam_hyps): for batch_idx, beam_hyp in enumerate(self._beam_hyps):
if self._done[batch_idx]: if self._done[batch_idx]:
...@@ -811,15 +817,17 @@ class ConstrainedBeamSearchScorer(BeamScorer): ...@@ -811,15 +817,17 @@ class ConstrainedBeamSearchScorer(BeamScorer):
final_beam_tokens: torch.LongTensor, final_beam_tokens: torch.LongTensor,
final_beam_indices: torch.LongTensor, final_beam_indices: torch.LongTensor,
max_length: int, max_length: int,
pad_token_id: Optional[int] = None, pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int]]] = None, eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None, beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0, decoder_prompt_len: Optional[int] = 0,
) -> Tuple[torch.LongTensor]: ) -> Tuple[torch.LongTensor]:
batch_size = len(self._beam_hyps) batch_size = len(self._beam_hyps)
if isinstance(eos_token_id, int): if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
# finalize all open beam hypotheses and add to generated hypotheses # finalize all open beam hypotheses and add to generated hypotheses
for batch_idx, beam_hyp in enumerate(self._beam_hyps): for batch_idx, beam_hyp in enumerate(self._beam_hyps):
......
...@@ -108,8 +108,8 @@ class MinLengthLogitsProcessor(LogitsProcessor): ...@@ -108,8 +108,8 @@ class MinLengthLogitsProcessor(LogitsProcessor):
Args: Args:
min_length (`int`): min_length (`int`):
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. The id(s) of the *end-of-sequence* token.
Examples: Examples:
...@@ -137,14 +137,14 @@ class MinLengthLogitsProcessor(LogitsProcessor): ...@@ -137,14 +137,14 @@ class MinLengthLogitsProcessor(LogitsProcessor):
``` ```
""" """
def __init__(self, min_length: int, eos_token_id: Union[int, List[int]]): def __init__(self, min_length: int, eos_token_id: Union[int, List[int], torch.Tensor]):
if not isinstance(min_length, int) or min_length < 0: if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}") raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")
if isinstance(eos_token_id, int): if not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id): eos_token_id = [eos_token_id]
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}") eos_token_id = torch.tensor(eos_token_id)
self.min_length = min_length self.min_length = min_length
self.eos_token_id = eos_token_id self.eos_token_id = eos_token_id
...@@ -152,8 +152,8 @@ class MinLengthLogitsProcessor(LogitsProcessor): ...@@ -152,8 +152,8 @@ class MinLengthLogitsProcessor(LogitsProcessor):
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
vocab_tensor = torch.arange(scores.shape[-1], device=scores.device) vocab_tensor = torch.arange(scores.shape[-1], device=scores.device)
eos_token_id = torch.tensor(self.eos_token_id, device=scores.device) self.eos_token_id = self.eos_token_id.to(scores.device)
eos_token_mask = torch.isin(vocab_tensor, eos_token_id) eos_token_mask = torch.isin(vocab_tensor, self.eos_token_id)
scores_processed = scores.clone() scores_processed = scores.clone()
if input_ids.shape[-1] < self.min_length: if input_ids.shape[-1] < self.min_length:
scores_processed = torch.where(eos_token_mask, -math.inf, scores) scores_processed = torch.where(eos_token_mask, -math.inf, scores)
...@@ -171,8 +171,8 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor): ...@@ -171,8 +171,8 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
input length. input length.
min_new_tokens (`int`): min_new_tokens (`int`):
The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`. The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. The id(s) of the *end-of-sequence* token.
Examples: Examples:
...@@ -195,7 +195,9 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor): ...@@ -195,7 +195,9 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
``` ```
""" """
def __init__(self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int]]): def __init__(
self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int], torch.Tensor]
):
for arg_name, arg_value in [ for arg_name, arg_value in [
("prompt_length_to_skip", prompt_length_to_skip), ("prompt_length_to_skip", prompt_length_to_skip),
("min_new_tokens", min_new_tokens), ("min_new_tokens", min_new_tokens),
...@@ -203,10 +205,10 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor): ...@@ -203,10 +205,10 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
if not isinstance(arg_value, int) or arg_value < 0: if not isinstance(arg_value, int) or arg_value < 0:
raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}") raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}")
if isinstance(eos_token_id, int): if not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id): eos_token_id = [eos_token_id]
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}") eos_token_id = torch.tensor(eos_token_id)
self.prompt_length_to_skip = prompt_length_to_skip self.prompt_length_to_skip = prompt_length_to_skip
self.min_new_tokens = min_new_tokens self.min_new_tokens = min_new_tokens
...@@ -217,8 +219,8 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor): ...@@ -217,8 +219,8 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip
scores_processed = scores.clone() scores_processed = scores.clone()
vocab_tensor = torch.arange(scores.shape[-1], device=scores.device) vocab_tensor = torch.arange(scores.shape[-1], device=scores.device)
eos_token_id = torch.tensor(self.eos_token_id, device=scores.device) self.eos_token_id = self.eos_token_id.to(scores.device)
eos_token_mask = torch.isin(vocab_tensor, eos_token_id) eos_token_mask = torch.isin(vocab_tensor, self.eos_token_id)
if new_tokens_length < self.min_new_tokens: if new_tokens_length < self.min_new_tokens:
scores_processed = torch.where(eos_token_mask, -math.inf, scores) scores_processed = torch.where(eos_token_mask, -math.inf, scores)
...@@ -1195,8 +1197,8 @@ class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor): ...@@ -1195,8 +1197,8 @@ class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
Args: Args:
bad_words_ids (`List[List[int]]`): bad_words_ids (`List[List[int]]`):
List of list of token ids that are not allowed to be generated. List of list of token ids that are not allowed to be generated.
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. The id(s) of the *end-of-sequence* token.
Examples: Examples:
...@@ -1233,18 +1235,22 @@ class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor): ...@@ -1233,18 +1235,22 @@ class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
``` ```
""" """
def __init__(self, bad_words_ids: List[List[int]], eos_token_id: Union[int, List[int]]): def __init__(
self, bad_words_ids: List[List[int]], eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None
):
self.bad_word_ids = bad_words_ids self.bad_word_ids = bad_words_ids
self._validate_arguments() self._validate_arguments()
# Filter EOS token from bad_words_ids # Filter EOS token from bad_words_ids
if eos_token_id is None: if eos_token_id is not None:
eos_token_id = [] if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int): if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id] eos_token_id = [eos_token_id]
bad_words_ids = list( eos_token_id = torch.tensor(eos_token_id)
filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids)
) bad_words_ids = list(
filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids)
)
# Forbidding a sequence is equivalent to setting its bias to -inf # Forbidding a sequence is equivalent to setting its bias to -inf
sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids} sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids}
...@@ -1522,9 +1528,8 @@ class ForcedEOSTokenLogitsProcessor(LogitsProcessor): ...@@ -1522,9 +1528,8 @@ class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
Args: Args:
max_length (`int`): max_length (`int`):
The maximum length of the sequence to be generated. The maximum length of the sequence to be generated.
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a The id(s) of the *end-of-sequence* token.
list to set multiple *end-of-sequence* tokens.
Examples: Examples:
...@@ -1548,15 +1553,22 @@ class ForcedEOSTokenLogitsProcessor(LogitsProcessor): ...@@ -1548,15 +1553,22 @@ class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
``` ```
""" """
def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]): def __init__(self, max_length: int, eos_token_id: Union[int, List[int], torch.Tensor]):
self.max_length = max_length self.max_length = max_length
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id] if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
self.eos_token_id = eos_token_id self.eos_token_id = eos_token_id
if torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any():
raise ValueError(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1] cur_len = input_ids.shape[-1]
self.eos_token_id = self.eos_token_id.to(scores.device)
scores_processed = scores scores_processed = scores
if cur_len == self.max_length - 1: if cur_len == self.max_length - 1:
scores_processed = torch.full_like(scores, -math.inf) scores_processed = torch.full_like(scores, -math.inf)
...@@ -1595,8 +1607,8 @@ class ExponentialDecayLengthPenalty(LogitsProcessor): ...@@ -1595,8 +1607,8 @@ class ExponentialDecayLengthPenalty(LogitsProcessor):
exponential_decay_length_penalty (`tuple(int, float)`): exponential_decay_length_penalty (`tuple(int, float)`):
This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty
starts and `decay_factor` represents the factor of exponential decay starts and `decay_factor` represents the factor of exponential decay
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. The id(s) of the *end-of-sequence* token.
input_ids_seq_length (`int`): input_ids_seq_length (`int`):
The length of the input sequence. The length of the input sequence.
...@@ -1656,27 +1668,33 @@ class ExponentialDecayLengthPenalty(LogitsProcessor): ...@@ -1656,27 +1668,33 @@ class ExponentialDecayLengthPenalty(LogitsProcessor):
def __init__( def __init__(
self, self,
exponential_decay_length_penalty: Tuple[int, float], exponential_decay_length_penalty: Tuple[int, float],
eos_token_id: Union[int, List[int]], eos_token_id: Union[int, List[int], torch.Tensor],
input_ids_seq_length: int, input_ids_seq_length: int,
): ):
self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length
self.regulation_factor = exponential_decay_length_penalty[1] self.regulation_factor = exponential_decay_length_penalty[1]
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id] if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
self.eos_token_id = eos_token_id self.eos_token_id = eos_token_id
if torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any():
raise ValueError(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1] cur_len = input_ids.shape[-1]
self.eos_token_id = self.eos_token_id.to(scores.device)
penalties = torch.zeros_like(scores) penalties = torch.zeros_like(scores)
scores_processed = scores scores_processed = scores
if cur_len > self.regulation_start: if cur_len > self.regulation_start:
for i in self.eos_token_id: penalty_idx = cur_len - self.regulation_start
penalty_idx = cur_len - self.regulation_start # To support negative logits we compute the penalty of the absolute value and add to the original logit
# To support negative logits we compute the penalty of the absolute value and add to the original logit penalty = torch.abs(scores[:, self.eos_token_id]) * (pow(self.regulation_factor, penalty_idx) - 1)
penalty = torch.abs(scores[:, i]) * (pow(self.regulation_factor, penalty_idx) - 1) penalties[:, self.eos_token_id] = penalty
penalties[:, i] = penalty scores_processed = scores + penalties
scores_processed = scores + penalties
return scores_processed return scores_processed
...@@ -1753,7 +1771,7 @@ class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor): ...@@ -1753,7 +1771,7 @@ class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor):
""" """
def __init__(self, begin_suppress_tokens, begin_index): def __init__(self, begin_suppress_tokens, begin_index):
self.begin_suppress_tokens = list(begin_suppress_tokens) self.begin_suppress_tokens = torch.tensor(list(begin_suppress_tokens))
self.begin_index = begin_index self.begin_index = begin_index
def set_begin_index(self, begin_index): def set_begin_index(self, begin_index):
...@@ -1762,8 +1780,8 @@ class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor): ...@@ -1762,8 +1780,8 @@ class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor):
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
vocab_tensor = torch.arange(scores.shape[-1], device=scores.device) vocab_tensor = torch.arange(scores.shape[-1], device=scores.device)
begin_suppress_tokens = torch.tensor(self.begin_suppress_tokens, device=scores.device) self.begin_suppress_tokens = self.begin_suppress_tokens.to(scores.device)
suppress_token_mask = torch.isin(vocab_tensor, begin_suppress_tokens) suppress_token_mask = torch.isin(vocab_tensor, self.begin_suppress_tokens)
scores_processed = scores scores_processed = scores
if input_ids.shape[-1] == self.begin_index: if input_ids.shape[-1] == self.begin_index:
scores_processed = torch.where(suppress_token_mask, -float("inf"), scores) scores_processed = torch.where(suppress_token_mask, -float("inf"), scores)
...@@ -1801,13 +1819,13 @@ class SuppressTokensLogitsProcessor(LogitsProcessor): ...@@ -1801,13 +1819,13 @@ class SuppressTokensLogitsProcessor(LogitsProcessor):
""" """
def __init__(self, suppress_tokens): def __init__(self, suppress_tokens):
self.suppress_tokens = list(suppress_tokens) self.suppress_tokens = torch.tensor(list(suppress_tokens))
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
vocab_tensor = torch.arange(scores.shape[-1], device=scores.device) vocab_tensor = torch.arange(scores.shape[-1], device=scores.device)
suppress_tokens = torch.tensor(self.suppress_tokens, device=scores.device) self.suppress_tokens = self.suppress_tokens.to(scores.device)
suppress_token_mask = torch.isin(vocab_tensor, suppress_tokens) suppress_token_mask = torch.isin(vocab_tensor, self.suppress_tokens)
scores = torch.where(suppress_token_mask, -float("inf"), scores) scores = torch.where(suppress_token_mask, -float("inf"), scores)
return scores return scores
...@@ -2268,16 +2286,22 @@ class BarkEosPrioritizerLogitsProcessor(LogitsProcessor): ...@@ -2268,16 +2286,22 @@ class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
</Tip> </Tip>
Args: Args:
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. The id(s) of the *end-of-sequence* token.
min_eos_p (`float`, *optional*): min_eos_p (`float`, *optional*):
Minimum end of speech threshold. Minimum end of speech threshold.
""" """
def __init__(self, eos_token_id: Union[int, List[int]], min_eos_p: float): def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor], min_eos_p: float):
if isinstance(eos_token_id, int): if not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
self.eos_token_id = eos_token_id self.eos_token_id = eos_token_id
if torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any():
raise ValueError(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
if min_eos_p is not None and min_eos_p <= 0: if min_eos_p is not None and min_eos_p <= 0:
raise ValueError(f"`min_eos_p` has to be a positive float, but is {min_eos_p}") raise ValueError(f"`min_eos_p` has to be a positive float, but is {min_eos_p}")
self.min_eos_p = min_eos_p self.min_eos_p = min_eos_p
...@@ -2285,6 +2309,7 @@ class BarkEosPrioritizerLogitsProcessor(LogitsProcessor): ...@@ -2285,6 +2309,7 @@ class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores_processed = scores scores_processed = scores
self.eos_token_id = self.eos_token_id.to(scores.device)
if self.min_eos_p: if self.min_eos_p:
probs = torch.nn.functional.softmax(scores.float(), dim=-1) probs = torch.nn.functional.softmax(scores.float(), dim=-1)
# create scores full of -inf except for the eos_token_id # create scores full of -inf except for the eos_token_id
......
...@@ -470,29 +470,32 @@ class EosTokenCriteria(StoppingCriteria): ...@@ -470,29 +470,32 @@ class EosTokenCriteria(StoppingCriteria):
By default, it uses the `model.generation_config.eos_token_id`. By default, it uses the `model.generation_config.eos_token_id`.
Args: Args:
eos_token_id (`Union[int, List[int]]`): eos_token_id (`Union[int, List[int], torch.Tensor]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens. The id(s) of the *end-of-sequence* token.
""" """
def __init__(self, eos_token_id: Union[int, List[int]]): def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor]):
if isinstance(eos_token_id, int): if not isinstance(eos_token_id, torch.Tensor):
eos_token_id = [eos_token_id] if isinstance(eos_token_id, int):
self.eos_token_id = torch.tensor(eos_token_id) eos_token_id = [eos_token_id]
eos_token_id = torch.tensor(eos_token_id)
self.eos_token_id = eos_token_id
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor: def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.BoolTensor:
self.eos_token_id = self.eos_token_id.to(input_ids.device)
if input_ids.device.type == "mps": if input_ids.device.type == "mps":
# https://github.com/pytorch/pytorch/issues/77764#issuecomment-2067838075 # https://github.com/pytorch/pytorch/issues/77764#issuecomment-2067838075
is_done = ( is_done = (
input_ids[:, -1] input_ids[:, -1]
.tile(self.eos_token_id.shape[0], 1) .tile(self.eos_token_id.shape[0], 1)
.eq(self.eos_token_id.unsqueeze(1).to(input_ids.device)) .eq(self.eos_token_id.unsqueeze(1))
.sum(dim=0) .sum(dim=0)
.bool() .bool()
.squeeze() .squeeze()
) )
else: else:
is_done = torch.isin(input_ids[:, -1], self.eos_token_id.to(input_ids.device)) is_done = torch.isin(input_ids[:, -1], self.eos_token_id)
return is_done return is_done
......
...@@ -353,7 +353,7 @@ class GenerationMixin: ...@@ -353,7 +353,7 @@ class GenerationMixin:
def _prepare_model_inputs( def _prepare_model_inputs(
self, self,
inputs: Optional[torch.Tensor] = None, inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None, bos_token_id: Optional[torch.Tensor] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]: ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
""" """
...@@ -417,7 +417,7 @@ class GenerationMixin: ...@@ -417,7 +417,7 @@ class GenerationMixin:
def _maybe_initialize_input_ids_for_generation( def _maybe_initialize_input_ids_for_generation(
self, self,
inputs: Optional[torch.Tensor] = None, inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None, bos_token_id: Optional[torch.Tensor] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor: ) -> torch.LongTensor:
"""Initializes input ids for generation, if necessary.""" """Initializes input ids for generation, if necessary."""
...@@ -449,20 +449,37 @@ class GenerationMixin: ...@@ -449,20 +449,37 @@ class GenerationMixin:
def _prepare_attention_mask_for_generation( def _prepare_attention_mask_for_generation(
self, self,
inputs: torch.Tensor, inputs: torch.Tensor,
pad_token_id: Optional[int], pad_token_id: Optional[torch.Tensor],
eos_token_id: Optional[Union[int, List[int]]], eos_token_id: Optional[torch.Tensor],
) -> torch.LongTensor: ) -> torch.LongTensor:
# No information for attention mask inference -> return default attention mask
default_attention_mask = torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
if pad_token_id is None:
return default_attention_mask
is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long] is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs) if not is_input_ids:
if isinstance(eos_token_id, int): return default_attention_mask
eos_token_id = [eos_token_id]
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id not in eos_token_id) # Otherwise we have may have information -> try to infer the attention mask
if inputs.device.type == "mps":
# Check if input is input_ids and padded -> only then is attention_mask defined # mps does not support torch.isin (https://github.com/pytorch/pytorch/issues/77764)
if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id: raise ValueError(
return inputs.ne(pad_token_id).long() "Can't infer missing attention mask on `mps` device. Please provide an `attention_mask` or use a different device."
else: )
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device)
is_pad_token_in_inputs = (pad_token_id is not None) and (
torch.isin(elements=inputs, test_elements=pad_token_id).any()
)
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~(
torch.isin(elements=eos_token_id, test_elements=pad_token_id).any()
)
can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
attention_mask_from_padding = inputs.ne(pad_token_id).long()
attention_mask = (
attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
)
return attention_mask
def _prepare_encoder_decoder_kwargs_for_generation( def _prepare_encoder_decoder_kwargs_for_generation(
self, self,
...@@ -510,8 +527,7 @@ class GenerationMixin: ...@@ -510,8 +527,7 @@ class GenerationMixin:
batch_size: int, batch_size: int,
model_input_name: str, model_input_name: str,
model_kwargs: Dict[str, torch.Tensor], model_kwargs: Dict[str, torch.Tensor],
decoder_start_token_id: Union[int, List[int]] = None, decoder_start_token_id: torch.Tensor,
bos_token_id: int = None,
device: torch.device = None, device: torch.device = None,
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models""" """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
...@@ -524,25 +540,24 @@ class GenerationMixin: ...@@ -524,25 +540,24 @@ class GenerationMixin:
else: else:
decoder_input_ids = None decoder_input_ids = None
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. # 2. `decoder_start_token_id` must have shape (batch_size, 1)
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
if device is None: if device is None:
device = self.device device = self.device
if isinstance(decoder_start_token_id, list): if decoder_start_token_id.ndim == 1:
if len(decoder_start_token_id) != batch_size: if decoder_start_token_id.shape[0] != batch_size:
raise ValueError( raise ValueError(
f"`decoder_start_token_id` expcted to have length {batch_size} but got {len(decoder_start_token_id)}" f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}"
) )
decoder_input_ids_start = torch.tensor(decoder_start_token_id, dtype=torch.long, device=device) decoder_start_token_id = decoder_start_token_id.view(-1, 1)
decoder_input_ids_start = decoder_input_ids_start.view(-1, 1)
else: else:
decoder_input_ids_start = ( decoder_start_token_id = (
torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id
) )
# 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
# no user input -> use decoder_start_token_id as decoder_input_ids # no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None: if decoder_input_ids is None:
decoder_input_ids = decoder_input_ids_start decoder_input_ids = decoder_start_token_id
# exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token # exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token
elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower(): elif self.config.model_type == "vision-encoder-decoder" and "donut" in self.name_or_path.lower():
pass pass
...@@ -550,14 +565,8 @@ class GenerationMixin: ...@@ -550,14 +565,8 @@ class GenerationMixin:
pass pass
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided) # decoder_attention_mask if provided)
elif ( elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item():
isinstance(decoder_start_token_id, int) decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1)
and (decoder_input_ids[:, 0] != decoder_start_token_id).all().item()
) or (
isinstance(decoder_start_token_id, torch.Tensor)
and (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item()
):
decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
if "decoder_attention_mask" in model_kwargs: if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = torch.cat( decoder_attention_mask = torch.cat(
...@@ -568,24 +577,6 @@ class GenerationMixin: ...@@ -568,24 +577,6 @@ class GenerationMixin:
return decoder_input_ids, model_kwargs return decoder_input_ids, model_kwargs
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@staticmethod @staticmethod
def _expand_inputs_for_generation( def _expand_inputs_for_generation(
expand_size: int = 1, expand_size: int = 1,
...@@ -729,6 +720,8 @@ class GenerationMixin: ...@@ -729,6 +720,8 @@ class GenerationMixin:
if generation_config.num_beams > 1: if generation_config.num_beams > 1:
if isinstance(generation_config.eos_token_id, list): if isinstance(generation_config.eos_token_id, list):
min_tokens_to_keep = len(generation_config.eos_token_id) + 1 min_tokens_to_keep = len(generation_config.eos_token_id) + 1
elif isinstance(generation_config.eos_token_id, torch.Tensor):
min_tokens_to_keep = generation_config.eos_token_id.shape[0] + 1
else: else:
min_tokens_to_keep = 2 min_tokens_to_keep = 2
else: else:
...@@ -1346,6 +1339,61 @@ class GenerationMixin: ...@@ -1346,6 +1339,61 @@ class GenerationMixin:
self._static_cache.reset() # reset the cache for a new generation self._static_cache.reset() # reset the cache for a new generation
return self._static_cache return self._static_cache
def _prepare_special_tokens(
self, generation_config: GenerationConfig, kwargs_has_attention_mask: Optional[bool] = None
):
"""
Prepares the special tokens for generation, overwriting the generation config with their processed versions
converted to tensor.
Note that `generation_config` is changed in place and stops being serializable after this method is called.
That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
"""
# Convert special tokens to tensors (if they exist)
def _tensor_or_none(token):
if token is None or isinstance(token, torch.Tensor):
return token
return torch.tensor(token, device=self.device, dtype=torch.long)
bos_token_id = _tensor_or_none(generation_config.bos_token_id)
eos_token_id = _tensor_or_none(generation_config.eos_token_id)
pad_token_id = _tensor_or_none(generation_config.pad_token_id)
decoder_start_token_id = _tensor_or_none(generation_config.decoder_start_token_id)
decoder_start_token_id = decoder_start_token_id if decoder_start_token_id is not None else bos_token_id
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
if eos_token_id is not None and eos_token_id.ndim == 0:
eos_token_id = eos_token_id.unsqueeze(0)
# Set pad token if unset (and there are conditions to do so)
if pad_token_id is None and eos_token_id is not None:
if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
pad_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_id} for open-end generation.")
# Sanity checks/warnings
if self.config.is_encoder_decoder and decoder_start_token_id is None:
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
if eos_token_id is not None and (torch.is_floating_point(eos_token_id) or (eos_token_id < 0).any()):
logger.warning(
f"`eos_token_id` should consist of positive integers, but is {eos_token_id}. Your generation will not "
"stop until the maximum length is reached. Depending on other flags, it may even crash."
)
# Update generation config with the updated special tokens tensors
generation_config.bos_token_id = bos_token_id
generation_config.eos_token_id = eos_token_id
generation_config.pad_token_id = pad_token_id
generation_config.decoder_start_token_id = decoder_start_token_id
@torch.no_grad() @torch.no_grad()
def generate( def generate(
self, self,
...@@ -1460,50 +1508,24 @@ class GenerationMixin: ...@@ -1460,50 +1508,24 @@ class GenerationMixin:
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
if model_kwargs.get("attention_mask", None) is None: requires_attention_mask = "encoder_outputs" not in model_kwargs
logger.warning( kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
"The attention mask and the pad token id were not set. As a consequence, you may observe " self._prepare_special_tokens(generation_config, kwargs_has_attention_mask)
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs # 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs inputs, generation_config.bos_token_id, model_kwargs
) )
batch_size = inputs_tensor.shape[0] batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs # decoder-only models must use left-padding for batched generation.
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are if not self.config.is_encoder_decoder and not is_torchdynamo_compiling():
# generating the first new token or not, and we only want to use the embeddings for the first new token)
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
model_kwargs["use_cache"] = True
else:
model_kwargs["use_cache"] = generation_config.use_cache
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
)
# decoder-only models should use left-padding for generation
if not self.config.is_encoder_decoder:
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id` # If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off. # Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
if ( if (
generation_config.pad_token_id is not None generation_config.pad_token_id is not None
and batch_size > 1
and len(inputs_tensor.shape) == 2 and len(inputs_tensor.shape) == 2
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0 and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
): ):
...@@ -1512,9 +1534,21 @@ class GenerationMixin: ...@@ -1512,9 +1534,21 @@ class GenerationMixin:
"generation results, please set `padding_side='left'` when initializing the tokenizer." "generation results, please set `padding_side='left'` when initializing the tokenizer."
) )
# 4. Define other model kwargs
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
# generating the first new token or not, and we only want to use the embeddings for the first new token)
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
model_kwargs["use_cache"] = True
else:
model_kwargs["use_cache"] = generation_config.use_cache
if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
)
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs: if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created # if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
# and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name, generation_config inputs_tensor, model_kwargs, model_input_name, generation_config
) )
...@@ -1526,7 +1560,6 @@ class GenerationMixin: ...@@ -1526,7 +1560,6 @@ class GenerationMixin:
model_input_name=model_input_name, model_input_name=model_input_name,
model_kwargs=model_kwargs, model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id, decoder_start_token_id=generation_config.decoder_start_token_id,
bos_token_id=generation_config.bos_token_id,
device=inputs_tensor.device, device=inputs_tensor.device,
) )
else: else:
...@@ -2631,9 +2664,6 @@ class GenerationMixin: ...@@ -2631,9 +2664,6 @@ class GenerationMixin:
return_dict_in_generate = generation_config.return_dict_in_generate return_dict_in_generate = generation_config.return_dict_in_generate
sequential = generation_config.low_memory sequential = generation_config.low_memory
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
batch_size = len(beam_scorer._beam_hyps) batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams num_beams = beam_scorer.num_beams
...@@ -2757,7 +2787,7 @@ class GenerationMixin: ...@@ -2757,7 +2787,7 @@ class GenerationMixin:
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
n_eos_tokens = len(eos_token_id) if eos_token_id else 0 n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
next_token_scores, next_tokens = torch.topk( next_token_scores, next_tokens = torch.topk(
next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
) )
...@@ -2901,9 +2931,6 @@ class GenerationMixin: ...@@ -2901,9 +2931,6 @@ class GenerationMixin:
output_logits = generation_config.output_logits output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate return_dict_in_generate = generation_config.return_dict_in_generate
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
batch_size = len(beam_scorer._beam_hyps) batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams num_beams = beam_scorer.num_beams
...@@ -3124,9 +3151,6 @@ class GenerationMixin: ...@@ -3124,9 +3151,6 @@ class GenerationMixin:
output_logits = generation_config.output_logits output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate return_dict_in_generate = generation_config.return_dict_in_generate
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
num_beams = beam_scorer.num_beams num_beams = beam_scorer.num_beams
num_beam_groups = beam_scorer.num_beam_groups num_beam_groups = beam_scorer.num_beam_groups
num_sub_beams = num_beams // num_beam_groups num_sub_beams = num_beams // num_beam_groups
...@@ -3229,7 +3253,7 @@ class GenerationMixin: ...@@ -3229,7 +3253,7 @@ class GenerationMixin:
next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size) next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
n_eos_tokens = len(eos_token_id) if eos_token_id else 0 n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
next_token_scores, next_tokens = torch.topk( next_token_scores, next_tokens = torch.topk(
next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
) )
...@@ -3409,9 +3433,6 @@ class GenerationMixin: ...@@ -3409,9 +3433,6 @@ class GenerationMixin:
output_logits = generation_config.output_logits output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate return_dict_in_generate = generation_config.return_dict_in_generate
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
batch_size = len(constrained_beam_scorer._beam_hyps) batch_size = len(constrained_beam_scorer._beam_hyps)
num_beams = constrained_beam_scorer.num_beams num_beams = constrained_beam_scorer.num_beams
...@@ -3501,7 +3522,7 @@ class GenerationMixin: ...@@ -3501,7 +3522,7 @@ class GenerationMixin:
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size) next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam. # Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
n_eos_tokens = len(eos_token_id) if eos_token_id else 0 n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
next_token_scores, next_tokens = torch.topk( next_token_scores, next_tokens = torch.topk(
next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
) )
......
...@@ -18,7 +18,7 @@ import inspect ...@@ -18,7 +18,7 @@ import inspect
import math import math
import random import random
from dataclasses import dataclass from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import torch import torch
import torch.nn as nn import torch.nn as nn
...@@ -2587,6 +2587,24 @@ class MusicgenForConditionalGeneration(PreTrainedModel): ...@@ -2587,6 +2587,24 @@ class MusicgenForConditionalGeneration(PreTrainedModel):
break break
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@torch.no_grad() @torch.no_grad()
def generate( def generate(
self, self,
......
...@@ -18,7 +18,7 @@ import inspect ...@@ -18,7 +18,7 @@ import inspect
import math import math
import random import random
from dataclasses import dataclass from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import torch import torch
import torch.nn as nn import torch.nn as nn
...@@ -2452,6 +2452,25 @@ class MusicgenMelodyForConditionalGeneration(PreTrainedModel): ...@@ -2452,6 +2452,25 @@ class MusicgenMelodyForConditionalGeneration(PreTrainedModel):
param.requires_grad = False param.requires_grad = False
self.text_encoder._requires_grad = False self.text_encoder._requires_grad = False
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenForConditionalGeneration._get_decoder_start_token_id
def _get_decoder_start_token_id(
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
) -> int:
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.generation_config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@torch.no_grad() @torch.no_grad()
def generate( def generate(
self, self,
......
...@@ -1458,6 +1458,9 @@ class RagTokenForGeneration(RagPreTrainedModel): ...@@ -1458,6 +1458,9 @@ class RagTokenForGeneration(RagPreTrainedModel):
generation_config = copy.deepcopy(generation_config) generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask)
# set default parameters # set default parameters
n_docs = n_docs if n_docs is not None else self.config.n_docs n_docs = n_docs if n_docs is not None else self.config.n_docs
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
# limitations under the License. # limitations under the License.
import copy
import inspect import inspect
import tempfile import tempfile
import unittest import unittest
...@@ -168,7 +169,9 @@ class GenerationTesterMixin: ...@@ -168,7 +169,9 @@ class GenerationTesterMixin:
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
num_interleave, dim=0 num_interleave, dim=0
) )
input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id() generation_config = copy.deepcopy(model.generation_config)
model._prepare_special_tokens(generation_config)
input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
attention_mask = None attention_mask = None
return encoder_outputs, input_ids, attention_mask return encoder_outputs, input_ids, attention_mask
......
...@@ -414,9 +414,11 @@ class SeamlessM4TModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase): ...@@ -414,9 +414,11 @@ class SeamlessM4TModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase):
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
num_interleave, dim=0 num_interleave, dim=0
) )
generation_config = copy.deepcopy(model.generation_config)
model._prepare_special_tokens(generation_config)
input_ids = ( input_ids = (
torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device) torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device)
+ model._get_decoder_start_token_id() + generation_config.decoder_start_token_id
) )
attention_mask = None attention_mask = None
return encoder_outputs, input_ids, attention_mask return encoder_outputs, input_ids, attention_mask
......
...@@ -430,9 +430,11 @@ class SeamlessM4Tv2ModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase) ...@@ -430,9 +430,11 @@ class SeamlessM4Tv2ModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase)
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
num_interleave, dim=0 num_interleave, dim=0
) )
generation_config = copy.deepcopy(model.generation_config)
model._prepare_special_tokens(generation_config)
input_ids = ( input_ids = (
torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device) torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device)
+ model._get_decoder_start_token_id() + generation_config.decoder_start_token_id
) )
attention_mask = None attention_mask = None
return encoder_outputs, input_ids, attention_mask return encoder_outputs, input_ids, attention_mask
......
...@@ -645,7 +645,9 @@ class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTest ...@@ -645,7 +645,9 @@ class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTest
num_interleave, dim=0 num_interleave, dim=0
) )
input_ids = input_ids[:, :, 0] input_ids = input_ids[:, :, 0]
input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + model._get_decoder_start_token_id() generation_config = copy.deepcopy(model.generation_config)
model._prepare_special_tokens(generation_config)
input_ids = torch.zeros_like(input_ids[:, :1]) + generation_config.decoder_start_token_id
attention_mask = None attention_mask = None
return encoder_outputs, input_ids, attention_mask return encoder_outputs, input_ids, attention_mask
......
...@@ -833,10 +833,10 @@ class WhisperModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMi ...@@ -833,10 +833,10 @@ class WhisperModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMi
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
num_interleave, dim=0 num_interleave, dim=0
) )
generation_config = copy.deepcopy(model.generation_config)
model._prepare_special_tokens(generation_config)
input_ids = input_ids[:, :, 0] input_ids = input_ids[:, :, 0]
input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + torch.tensor( input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + generation_config.decoder_start_token_id
[model._get_decoder_start_token_id()], device=input_ids.device
)
attention_mask = None attention_mask = None
return encoder_outputs, input_ids, attention_mask return encoder_outputs, input_ids, attention_mask
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment