Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
709dc432
Unverified
Commit
709dc432
authored
Feb 01, 2024
by
fxmarty
Committed by
GitHub
Feb 01, 2024
Browse files
Fix symbolic_trace with kv cache (#28724)
* fix symbolic_trace with kv cache * comment & better test
parent
eb8e7a00
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
135 additions
and
111 deletions
+135
-111
src/transformers/utils/fx.py
src/transformers/utils/fx.py
+16
-4
tests/test_modeling_common.py
tests/test_modeling_common.py
+119
-107
No files found.
src/transformers/utils/fx.py
View file @
709dc432
...
@@ -765,7 +765,7 @@ class HFTracer(Tracer):
...
@@ -765,7 +765,7 @@ class HFTracer(Tracer):
)
)
def
_generate_dummy_input
(
def
_generate_dummy_input
(
self
,
model
:
PreTrainedModel
,
input_name
:
str
,
shape
:
List
[
int
]
self
,
model
:
PreTrainedModel
,
input_name
:
str
,
shape
:
List
[
int
]
,
input_names
:
List
[
str
]
)
->
Dict
[
str
,
torch
.
Tensor
]:
)
->
Dict
[
str
,
torch
.
Tensor
]:
"""Generates dummy input for model inference recording."""
"""Generates dummy input for model inference recording."""
# Retrieving the model class, either from the "class_for_deserialization" attribute if the model was restored
# Retrieving the model class, either from the "class_for_deserialization" attribute if the model was restored
...
@@ -774,6 +774,11 @@ class HFTracer(Tracer):
...
@@ -774,6 +774,11 @@ class HFTracer(Tracer):
device
=
model
.
device
device
=
model
.
device
inputs_dict
=
{}
inputs_dict
=
{}
# when tracing a model with KV cache, we simply need to unsure that the KV cache length is larger than one to
# rightfully pass certain controlflows (Example: https://github.com/huggingface/transformers/blob/5c8d941d66734811d2ef6f57f15b44f7fb7a98c4/src/transformers/modeling_attn_mask_utils.py#L162).
# After tracing, the model can then still be used with arbitrary lengths different than the one used during tracing.
kv_cache_length
=
5
if
input_name
in
[
"labels"
,
"start_positions"
,
"end_positions"
]:
if
input_name
in
[
"labels"
,
"start_positions"
,
"end_positions"
]:
batch_size
=
shape
[
0
]
batch_size
=
shape
[
0
]
if
model_class_name
in
[
if
model_class_name
in
[
...
@@ -883,7 +888,14 @@ class HFTracer(Tracer):
...
@@ -883,7 +888,14 @@ class HFTracer(Tracer):
# Generating big sequence length for audio inputs.
# Generating big sequence length for audio inputs.
seq_length
=
_generate_random_int
(
low
=
10000
,
high
=
20000
)
seq_length
=
_generate_random_int
(
low
=
10000
,
high
=
20000
)
inputs_dict
[
input_name
]
=
torch
.
zeros
(
batch_size
,
seq_length
,
dtype
=
torch
.
float
,
device
=
device
)
inputs_dict
[
input_name
]
=
torch
.
zeros
(
batch_size
,
seq_length
,
dtype
=
torch
.
float
,
device
=
device
)
elif
"mask"
in
input_name
or
"ids"
in
input_name
:
elif
"mask"
in
input_name
:
if
"past_key_values"
in
input_names
:
mask_shape
=
[
shape
[
0
],
shape
[
1
]
+
kv_cache_length
]
else
:
mask_shape
=
shape
inputs_dict
[
input_name
]
=
torch
.
zeros
(
mask_shape
,
dtype
=
torch
.
long
,
device
=
device
)
elif
"ids"
in
input_name
:
inputs_dict
[
input_name
]
=
torch
.
zeros
(
shape
,
dtype
=
torch
.
long
,
device
=
device
)
inputs_dict
[
input_name
]
=
torch
.
zeros
(
shape
,
dtype
=
torch
.
long
,
device
=
device
)
elif
"past_key_values"
in
input_name
:
elif
"past_key_values"
in
input_name
:
if
model
.
config
.
model_type
not
in
_FX_SUPPORTED_MODELS_WITH_KV_CACHE
:
if
model
.
config
.
model_type
not
in
_FX_SUPPORTED_MODELS_WITH_KV_CACHE
:
...
@@ -893,7 +905,7 @@ class HFTracer(Tracer):
...
@@ -893,7 +905,7 @@ class HFTracer(Tracer):
num_heads
=
model
.
config
.
num_attention_heads
num_heads
=
model
.
config
.
num_attention_heads
head_dim
=
model
.
config
.
hidden_size
//
model
.
config
.
num_attention_heads
head_dim
=
model
.
config
.
hidden_size
//
model
.
config
.
num_attention_heads
cache_shape
=
(
shape
[
0
],
num_heads
,
0
,
head_dim
)
cache_shape
=
(
shape
[
0
],
num_heads
,
kv_cache_length
,
head_dim
)
pkv
=
tuple
(
pkv
=
tuple
(
(
(
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
device
),
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
device
),
...
@@ -1095,7 +1107,7 @@ class HFTracer(Tracer):
...
@@ -1095,7 +1107,7 @@ class HFTracer(Tracer):
if
isinstance
(
root
,
self
.
supported_archs
)
or
type
(
root
).
__qualname__
.
startswith
(
if
isinstance
(
root
,
self
.
supported_archs
)
or
type
(
root
).
__qualname__
.
startswith
(
(
"_deserialize_graph_module"
,
"_CodeOnlyModule"
)
(
"_deserialize_graph_module"
,
"_CodeOnlyModule"
)
):
):
inputs
.
update
(
self
.
_generate_dummy_input
(
root
,
input_name
,
shape
))
inputs
.
update
(
self
.
_generate_dummy_input
(
root
,
input_name
,
shape
,
input_names
=
input_names
))
else
:
else
:
raise
RuntimeError
(
raise
RuntimeError
(
f
"Could not generate input named
{
input_name
}
for because root is not a"
f
"Could not generate input named
{
input_name
}
for because root is not a"
...
...
tests/test_modeling_common.py
View file @
709dc432
...
@@ -1053,7 +1053,9 @@ class ModelTesterMixin:
...
@@ -1053,7 +1053,9 @@ class ModelTesterMixin:
model
.
eval
()
model
.
eval
()
inputs
=
self
.
_prepare_for_class
(
inputs_dict
,
model_class
,
return_labels
=
output_loss
)
inputs
=
self
.
_prepare_for_class
(
inputs_dict
,
model_class
,
return_labels
=
output_loss
)
try
:
# We may want to test several inputs (various shapes, etc.).
inputs_to_test
=
[
inputs
]
if
model
.
config
.
is_encoder_decoder
:
if
model
.
config
.
is_encoder_decoder
:
model
.
config
.
use_cache
=
False
# FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
model
.
config
.
use_cache
=
False
# FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
labels
=
inputs
.
get
(
"labels"
,
None
)
labels
=
inputs
.
get
(
"labels"
,
None
)
...
@@ -1067,14 +1069,6 @@ class ModelTesterMixin:
...
@@ -1067,14 +1069,6 @@ class ModelTesterMixin:
]
]
if
labels
is
not
None
:
if
labels
is
not
None
:
input_names
.
append
(
"labels"
)
input_names
.
append
(
"labels"
)
filtered_inputs
=
{
k
:
v
for
(
k
,
v
)
in
inputs
.
items
()
if
k
in
input_names
}
input_names
=
list
(
filtered_inputs
.
keys
())
model_output
=
model
(
**
filtered_inputs
)
traced_model
=
symbolic_trace
(
model
,
input_names
)
traced_output
=
traced_model
(
**
filtered_inputs
)
else
:
else
:
input_names
=
[
input_names
=
[
"attention_mask"
,
"attention_mask"
,
...
@@ -1108,7 +1102,17 @@ class ModelTesterMixin:
...
@@ -1108,7 +1102,17 @@ class ModelTesterMixin:
head_dim
=
model
.
config
.
hidden_size
//
model
.
config
.
num_attention_heads
head_dim
=
model
.
config
.
hidden_size
//
model
.
config
.
num_attention_heads
cache_shape
=
(
batch_size
,
num_heads
,
0
,
head_dim
)
cache_shape
=
(
batch_size
,
num_heads
,
0
,
head_dim
)
pkv
=
tuple
(
empty_pkv
=
tuple
(
(
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
torch_device
),
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
torch_device
),
)
for
i
in
range
(
model
.
config
.
num_hidden_layers
)
)
cache_length
=
9
cache_shape
=
(
batch_size
,
num_heads
,
cache_length
,
head_dim
)
non_empty_pkv
=
tuple
(
(
(
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
torch_device
),
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
torch_device
),
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
torch_device
),
torch
.
rand
(
cache_shape
,
dtype
=
torch
.
float
,
device
=
torch_device
),
...
@@ -1116,9 +1120,20 @@ class ModelTesterMixin:
...
@@ -1116,9 +1120,20 @@ class ModelTesterMixin:
for
i
in
range
(
model
.
config
.
num_hidden_layers
)
for
i
in
range
(
model
.
config
.
num_hidden_layers
)
)
)
inputs
[
"past_key_values"
]
=
pkv
inps
=
copy
.
deepcopy
(
inputs_to_test
[
0
])
inputs_to_test
[
0
][
"past_key_values"
]
=
empty_pkv
filtered_inputs
=
{
k
:
v
for
(
k
,
v
)
in
inputs
.
items
()
if
k
in
input_names
}
inps
[
"past_key_values"
]
=
non_empty_pkv
inputs_to_test
.
append
(
inps
)
past_mask
=
torch
.
ones
(
batch_size
,
cache_length
,
device
=
torch_device
,
dtype
=
torch
.
float
)
inputs_to_test
[
1
][
"attention_mask"
]
=
torch
.
cat
(
(
past_mask
,
inputs_to_test
[
1
][
"attention_mask"
]),
dim
=
1
)
for
inps
in
inputs_to_test
:
filtered_inputs
=
{
k
:
v
for
(
k
,
v
)
in
inps
.
items
()
if
k
in
input_names
}
input_names
=
list
(
filtered_inputs
.
keys
())
input_names
=
list
(
filtered_inputs
.
keys
())
if
model
.
__class__
.
__name__
in
set
(
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
.
values
())
and
(
if
model
.
__class__
.
__name__
in
set
(
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
.
values
())
and
(
...
@@ -1132,9 +1147,6 @@ class ModelTesterMixin:
...
@@ -1132,9 +1147,6 @@ class ModelTesterMixin:
traced_output
=
traced_model
(
**
filtered_inputs
)
traced_output
=
traced_model
(
**
filtered_inputs
)
model_output
=
model
(
**
filtered_inputs
)
model_output
=
model
(
**
filtered_inputs
)
except
Exception
as
e
:
self
.
fail
(
f
"Couldn't trace module:
{
e
}
"
)
def
flatten_output
(
output
):
def
flatten_output
(
output
):
flatten
=
[]
flatten
=
[]
for
x
in
output
:
for
x
in
output
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment