Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
6e1ee47b
Unverified
Commit
6e1ee47b
authored
Apr 15, 2021
by
Sylvain Gugger
Committed by
GitHub
Apr 15, 2021
Browse files
Support for set_epoch (#11258)
parent
c3fcba32
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
4 deletions
+18
-4
src/transformers/trainer.py
src/transformers/trainer.py
+9
-1
src/transformers/trainer_pt_utils.py
src/transformers/trainer_pt_utils.py
+9
-3
No files found.
src/transformers/trainer.py
View file @
6e1ee47b
...
@@ -191,9 +191,15 @@ class Trainer:
...
@@ -191,9 +191,15 @@ class Trainer:
The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
The function to use to form a batch from a list of elements of :obj:`train_dataset` or :obj:`eval_dataset`.
Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is provided, an instance of
:func:`~transformers.DataCollatorWithPadding` otherwise.
:func:`~transformers.DataCollatorWithPadding` otherwise.
train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
train_dataset (:obj:`torch.utils.data.dataset.Dataset`
or :obj:`torch.utils.data.dataset.IterableDataset`
, `optional`):
The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed.
``model.forward()`` method are automatically removed.
Note that if it's a :obj:`torch.utils.data.dataset.IterableDataset` with some randomization and you are
training in a distributed fashion, your iterable dataset should either use a internal attribute
:obj:`generator` that is a :obj:`torch.Generator` for the randomization that must be identic on all
processes (and the Trainer will manually set the seed of this :obj:`generator` at each epoch) or have a
:obj:`set_epoch()` method that internally sets the seed of the RNGs used.
eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed.
``model.forward()`` method are automatically removed.
...
@@ -1095,6 +1101,8 @@ class Trainer:
...
@@ -1095,6 +1101,8 @@ class Trainer:
for
epoch
in
range
(
epochs_trained
,
num_train_epochs
):
for
epoch
in
range
(
epochs_trained
,
num_train_epochs
):
if
isinstance
(
train_dataloader
,
DataLoader
)
and
isinstance
(
train_dataloader
.
sampler
,
DistributedSampler
):
if
isinstance
(
train_dataloader
,
DataLoader
)
and
isinstance
(
train_dataloader
.
sampler
,
DistributedSampler
):
train_dataloader
.
sampler
.
set_epoch
(
epoch
)
train_dataloader
.
sampler
.
set_epoch
(
epoch
)
elif
isinstance
(
train_dataloader
.
dataset
,
IterableDatasetShard
):
train_dataloader
.
dataset
.
set_epoch
(
epoch
)
if
is_torch_tpu_available
():
if
is_torch_tpu_available
():
parallel_loader
=
pl
.
ParallelLoader
(
train_dataloader
,
[
self
.
args
.
device
]).
per_device_loader
(
parallel_loader
=
pl
.
ParallelLoader
(
train_dataloader
,
[
self
.
args
.
device
]).
per_device_loader
(
...
...
src/transformers/trainer_pt_utils.py
View file @
6e1ee47b
...
@@ -598,8 +598,8 @@ class IterableDatasetShard(IterableDataset):
...
@@ -598,8 +598,8 @@ class IterableDatasetShard(IterableDataset):
:obj:`dataset` to generate your random numbers and call the
:obj:`dataset` to generate your random numbers and call the
:meth:`~transformers.trainer_pt_utils.IterableDatasetShard.set_epoch` method of this object. It will set the
:meth:`~transformers.trainer_pt_utils.IterableDatasetShard.set_epoch` method of this object. It will set the
seed of this :obj:`generator` to :obj:`seed + epoch` on all processes before starting the iteration.
seed of this :obj:`generator` to :obj:`seed + epoch` on all processes before starting the iteration.
Alternatively, you can also
subclass this class and override the :meth:`__iter__
` method
with
your
custom
Alternatively, you can also
implement a :obj:`set_epoch()
` method
in
your
iterable dataset to deal with this.
logic.
Args:
Args:
dataset (:obj:`torch.utils.data.dataset.IterableDataset`):
dataset (:obj:`torch.utils.data.dataset.IterableDataset`):
...
@@ -637,9 +637,15 @@ class IterableDatasetShard(IterableDataset):
...
@@ -637,9 +637,15 @@ class IterableDatasetShard(IterableDataset):
def
set_epoch
(
self
,
epoch
):
def
set_epoch
(
self
,
epoch
):
self
.
epoch
=
epoch
self
.
epoch
=
epoch
if
hasattr
(
self
.
dataset
,
"set_epoch"
):
self
.
dataset
.
set_epoch
(
epoch
)
def
__iter__
(
self
):
def
__iter__
(
self
):
if
hasattr
(
self
.
dataset
,
"generator"
)
and
isinstance
(
self
.
dataset
.
generator
,
torch
.
Generator
):
if
(
not
hasattr
(
self
.
dataset
,
"set_epoch"
)
and
hasattr
(
self
.
dataset
,
"generator"
)
and
isinstance
(
self
.
dataset
.
generator
,
torch
.
Generator
)
):
self
.
dataset
.
generator
.
manual_seed
(
self
.
seed
+
self
.
epoch
)
self
.
dataset
.
generator
.
manual_seed
(
self
.
seed
+
self
.
epoch
)
real_batch_size
=
self
.
batch_size
*
self
.
num_processes
real_batch_size
=
self
.
batch_size
*
self
.
num_processes
process_slice
=
range
(
self
.
process_index
*
self
.
batch_size
,
(
self
.
process_index
+
1
)
*
self
.
batch_size
)
process_slice
=
range
(
self
.
process_index
*
self
.
batch_size
,
(
self
.
process_index
+
1
)
*
self
.
batch_size
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment