"docs/source/fr/_config.py" did not exist on "63c284c2d4ac54a2dc81a4dc9b6f9fe6c66d523d"
Unverified Commit 6bca43bb authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Input data format (#25464)

* Add copied from statements for image processors

* Move out rescale and normalize to base image processor

* Remove rescale and normalize from vit (post rebase)

* Update docstrings and tidy up

* PR comments

* Add input_data_format as preprocess argument

* Resolve tests and tidy up

* Remove num_channels argument

* Update doc strings -> default ints not in code formatting
parent a6609caf
......@@ -521,7 +521,12 @@ class BaseImageProcessor(ImageProcessingMixin):
raise NotImplementedError("Each image processor must implement its own preprocess method")
def rescale(
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
self,
image: np.ndarray,
scale: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
......@@ -536,11 +541,16 @@ class BaseImageProcessor(ImageProcessingMixin):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs)
def normalize(
self,
......@@ -548,6 +558,7 @@ class BaseImageProcessor(ImageProcessingMixin):
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -565,17 +576,25 @@ class BaseImageProcessor(ImageProcessingMixin):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
return normalize(
image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -588,12 +607,26 @@ class BaseImageProcessor(ImageProcessingMixin):
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
return center_crop(
image,
size=(size["height"], size["width"]),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"}, {"longest_edge"})
......
......@@ -27,6 +27,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -145,6 +146,7 @@ class BeitImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -159,12 +161,19 @@ class BeitImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=True, param_name="size")
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
image,
size=(size["height"], size["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def reduce_label(self, label: ImageInput) -> np.ndarray:
......@@ -189,21 +198,22 @@ class BeitImageProcessor(BaseImageProcessor):
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size)
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
......@@ -221,10 +231,13 @@ class BeitImageProcessor(BaseImageProcessor):
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image,
do_reduce_labels=False,
......@@ -238,9 +251,10 @@ class BeitImageProcessor(BaseImageProcessor):
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_segmentation_map(
......@@ -252,6 +266,7 @@ class BeitImageProcessor(BaseImageProcessor):
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_reduce_labels: bool = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
......@@ -260,8 +275,11 @@ class BeitImageProcessor(BaseImageProcessor):
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
input_data_format = ChannelDimension.FIRST
else:
added_dimension = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
......@@ -272,6 +290,7 @@ class BeitImageProcessor(BaseImageProcessor):
crop_size=crop_size,
do_normalize=False,
do_rescale=False,
input_data_format=ChannelDimension.FIRST,
)
# Remove extra axis if added
if added_dimension:
......@@ -301,6 +320,7 @@ class BeitImageProcessor(BaseImageProcessor):
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -344,8 +364,15 @@ class BeitImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -403,6 +430,7 @@ class BeitImageProcessor(BaseImageProcessor):
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
......
......@@ -31,6 +31,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -125,6 +126,7 @@ class BitImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -140,12 +142,23 @@ class BitImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
output_size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
......@@ -163,6 +176,7 @@ class BitImageProcessor(BaseImageProcessor):
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -205,9 +219,15 @@ class BitImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -250,19 +270,36 @@ class BitImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -26,6 +26,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -111,6 +112,7 @@ class BlipImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -128,6 +130,13 @@ class BlipImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
......@@ -136,7 +145,14 @@ class BlipImageProcessor(BaseImageProcessor):
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
......@@ -152,6 +168,7 @@ class BlipImageProcessor(BaseImageProcessor):
return_tensors: Optional[Union[str, TensorType]] = None,
do_convert_rgb: bool = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -190,8 +207,15 @@ class BlipImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
......@@ -229,16 +253,31 @@ class BlipImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
......
......@@ -50,7 +50,9 @@ def max_across_indices(values: Iterable[Any]) -> List[Any]:
# Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
......@@ -60,33 +62,40 @@ def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarr
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
# Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
def get_max_height_width(images: List[np.ndarray]) -> List[int]:
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
input_channel_dimension = infer_channel_dimension_format(images[0])
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_channel_dimension == ChannelDimension.FIRST:
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_channel_dimension == ChannelDimension.LAST:
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}")
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.vilt.image_processing_vilt.get_resize_output_image_size
def get_resize_output_image_size(
input_image: np.ndarray, shorter: int = 800, longer: int = 1333, size_divisor: int = 32
input_image: np.ndarray,
shorter: int = 800,
longer: int = 1333,
size_divisor: int = 32,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
input_height, input_width = get_image_size(input_image)
input_height, input_width = get_image_size(input_image, input_data_format)
min_size, max_size = shorter, longer
scale = min_size / min(input_height, input_width)
......@@ -122,7 +131,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
Resize the shorter side of the input to `size["shortest_edge"]`. The longer side will be limited to under
`int((1333 / 800) * size["shortest_edge"])` while preserving the aspect ratio. Only has an effect if
`do_resize` is set to `True`. Can be overridden by the `size` parameter in the `preprocess` method.
size_divisor (`int`, *optional*, defaults to `32`):
size_divisor (`int`, *optional*, defaults to 32):
The size by which to make sure both the height and width can be divided. Only has an effect if `do_resize`
is set to `True`. Can be overridden by the `size_divisor` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
......@@ -197,6 +206,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
size_divisor: int = 32,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -217,20 +227,32 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
shorter = size["shortest_edge"]
longer = int(1333 / 800 * shorter)
output_size = get_resize_output_image_size(image, shorter=shorter, longer=longer, size_divisor=size_divisor)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
output_size = get_resize_output_image_size(
image, shorter=shorter, longer=longer, size_divisor=size_divisor, input_data_format=input_data_format
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -244,9 +266,18 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
Size of the output image in the form `{"height": h, "width": w}`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
output_size = size["shortest_edge"]
return center_crop(image, size=(output_size, output_size), data_format=data_format, **kwargs)
return center_crop(
image,
size=(output_size, output_size),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
def _pad_image(
......@@ -255,18 +286,24 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
......@@ -278,6 +315,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
......@@ -299,17 +337,28 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images)
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format)
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images]
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -330,6 +379,7 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
do_center_crop: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -374,8 +424,15 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
......@@ -414,22 +471,41 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
if do_resize:
images = [
self.resize(image=image, size=size, size_divisor=size_divisor, resample=resample) for image in images
self.resize(
image=image,
size=size,
size_divisor=size_divisor,
resample=resample,
input_data_format=input_data_format,
)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=size) for image in images]
images = [
self.center_crop(image=image, size=size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
if do_pad:
encoded_outputs = self.pad(images, return_pixel_mask=True, return_tensors=return_tensors)
encoded_outputs = self.pad(
images, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=data_format
)
else:
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
......
......@@ -31,6 +31,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -124,6 +125,7 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -139,12 +141,22 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
output_size = get_resize_output_image_size(
image, size=(size["height"], size["width"]), default_to_square=False
image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def preprocess(
self,
......@@ -162,6 +174,7 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -204,9 +217,15 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -249,19 +268,36 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -31,6 +31,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -124,6 +125,7 @@ class CLIPImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -139,12 +141,23 @@ class CLIPImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
output_size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
......@@ -162,6 +175,7 @@ class CLIPImageProcessor(BaseImageProcessor):
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -204,9 +218,15 @@ class CLIPImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -249,19 +269,36 @@ class CLIPImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -124,7 +124,10 @@ def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, in
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
def get_resize_output_image_size(
input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
......@@ -138,8 +141,10 @@ def get_resize_output_image_size(
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image)
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
......@@ -209,23 +214,28 @@ def max_across_indices(values: Iterable[Any]) -> List[Any]:
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(images: List[np.ndarray]) -> List[int]:
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
input_channel_dimension = infer_channel_dimension_format(images[0])
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_channel_dimension == ChannelDimension.FIRST:
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_channel_dimension == ChannelDimension.LAST:
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}")
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
......@@ -235,7 +245,7 @@ def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarr
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
......@@ -277,11 +287,16 @@ def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndar
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->ConditionalDetr
def prepare_coco_detection_annotation(image, target, return_segmentation_masks: bool = False):
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by ConditionalDetr.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
......@@ -366,12 +381,16 @@ def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->ConditionalDetr
def prepare_coco_panoptic_annotation(
image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for ConditionalDetr.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
......@@ -842,6 +861,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
format: Optional[AnnotionFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into ConditionalDetr model.
......@@ -850,11 +870,17 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
if format == AnnotionFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(image, target, return_segmentation_masks)
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotionFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image, target, masks_path=masks_path, return_masks=return_segmentation_masks
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
......@@ -892,11 +918,26 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
`height` and `width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
......@@ -908,7 +949,9 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
......@@ -916,7 +959,9 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(image, size=size, resample=resample, data_format=data_format)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
......@@ -935,7 +980,11 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
......@@ -950,8 +999,13 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format)
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
......@@ -968,18 +1022,24 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
......@@ -991,6 +1051,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
......@@ -1012,17 +1073,28 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images)
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format)
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images]
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -1046,6 +1118,7 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
format: Optional[Union[str, AnnotionFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
......@@ -1091,8 +1164,17 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format):
The channel dimension format of the image. If not provided, it will be the same as the input image.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
......@@ -1177,13 +1259,22 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
......@@ -1196,33 +1287,49 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image)
resized_image = self.resize(image, size=size, max_size=max_size, resample=resample)
resized_annotation = self.resize_annotation(target, orig_size, get_image_size(resized_image))
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [self.resize(image, size=size, resample=resample) for image in images]
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor) for image in images]
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [self.normalize(image, image_mean, image_std) for image in images]
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image))
self.normalize_annotation(
annotation, get_image_size(image, input_data_format), input_data_format=input_data_format
)
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
data = self.pad(images, return_pixel_mask=True, data_format=data_format)
data = self.pad(
images, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format
)
else:
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
......
......@@ -31,6 +31,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -118,6 +119,7 @@ class ConvNextImageProcessor(BaseImageProcessor):
crop_pct: float,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -137,6 +139,9 @@ class ConvNextImageProcessor(BaseImageProcessor):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
......@@ -146,14 +151,34 @@ class ConvNextImageProcessor(BaseImageProcessor):
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
resize_shortest_edge = int(shortest_edge / crop_pct)
resize_size = get_resize_output_image_size(image, size=resize_shortest_edge, default_to_square=False)
image = resize(image=image, size=resize_size, resample=resample, data_format=data_format, **kwargs)
resize_size = get_resize_output_image_size(
image, size=resize_shortest_edge, default_to_square=False, input_data_format=input_data_format
)
image = resize(
image=image,
size=resize_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=image, size=(shortest_edge, shortest_edge), data_format=data_format, **kwargs)
return center_crop(
image=image,
size=(shortest_edge, shortest_edge),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
image, size=(shortest_edge, shortest_edge), resample=resample, data_format=data_format, **kwargs
image,
size=(shortest_edge, shortest_edge),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
......@@ -170,6 +195,7 @@ class ConvNextImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -209,8 +235,15 @@ class ConvNextImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
......@@ -247,16 +280,33 @@ class ConvNextImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, crop_pct=crop_pct, resample=resample) for image in images]
images = [
self.resize(
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
)
for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -123,7 +123,10 @@ def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, in
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
def get_resize_output_image_size(
input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
......@@ -137,8 +140,10 @@ def get_resize_output_image_size(
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image)
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
......@@ -208,23 +213,28 @@ def max_across_indices(values: Iterable[Any]) -> List[Any]:
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(images: List[np.ndarray]) -> List[int]:
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
input_channel_dimension = infer_channel_dimension_format(images[0])
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_channel_dimension == ChannelDimension.FIRST:
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_channel_dimension == ChannelDimension.LAST:
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}")
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
......@@ -234,7 +244,7 @@ def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarr
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
......@@ -276,11 +286,16 @@ def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndar
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DeformableDetr
def prepare_coco_detection_annotation(image, target, return_segmentation_masks: bool = False):
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DeformableDetr.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
......@@ -365,12 +380,16 @@ def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DeformableDetr
def prepare_coco_panoptic_annotation(
image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for DeformableDetr.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
......@@ -840,6 +859,7 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
format: Optional[AnnotionFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DeformableDetr model.
......@@ -848,11 +868,17 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
if format == AnnotionFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(image, target, return_segmentation_masks)
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotionFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image, target, masks_path=masks_path, return_masks=return_segmentation_masks
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
......@@ -890,11 +916,26 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
`height` and `width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
......@@ -906,7 +947,9 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
......@@ -914,7 +957,9 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(image, size=size, resample=resample, data_format=data_format)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
......@@ -933,7 +978,11 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
......@@ -948,8 +997,13 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format)
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
......@@ -966,18 +1020,24 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
......@@ -989,6 +1049,7 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
......@@ -1010,17 +1071,28 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images)
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format)
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images]
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -1044,6 +1116,7 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
format: Optional[Union[str, AnnotionFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
......@@ -1089,8 +1162,17 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format):
The channel dimension format of the image. If not provided, it will be the same as the input image.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
......@@ -1175,13 +1257,22 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
......@@ -1194,33 +1285,49 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image)
resized_image = self.resize(image, size=size, max_size=max_size, resample=resample)
resized_annotation = self.resize_annotation(target, orig_size, get_image_size(resized_image))
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [self.resize(image, size=size, resample=resample) for image in images]
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor) for image in images]
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [self.normalize(image, image_mean, image_std) for image in images]
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image))
self.normalize_annotation(
annotation, get_image_size(image, input_data_format), input_data_format=input_data_format
)
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
data = self.pad(images, return_pixel_mask=True, data_format=data_format)
data = self.pad(
images, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format
)
else:
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
......
......@@ -26,6 +26,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -114,6 +115,7 @@ class DeiTImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -131,6 +133,13 @@ class DeiTImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
......@@ -139,7 +148,14 @@ class DeiTImageProcessor(BaseImageProcessor):
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
......@@ -156,6 +172,7 @@ class DeiTImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -197,6 +214,12 @@ class DeiTImageProcessor(BaseImageProcessor):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
......@@ -235,19 +258,36 @@ class DeiTImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -115,7 +115,10 @@ def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, in
# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
def get_resize_output_image_size(
input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
......@@ -129,8 +132,10 @@ def get_resize_output_image_size(
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image)
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
......@@ -200,23 +205,28 @@ def max_across_indices(values: Iterable[Any]) -> List[Any]:
# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(images: List[np.ndarray]) -> List[int]:
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
input_channel_dimension = infer_channel_dimension_format(images[0])
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_channel_dimension == ChannelDimension.FIRST:
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_channel_dimension == ChannelDimension.LAST:
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}")
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
......@@ -226,7 +236,7 @@ def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarr
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
......@@ -268,11 +278,16 @@ def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndar
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DETA
def prepare_coco_detection_annotation(image, target, return_segmentation_masks: bool = False):
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DETA.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
......@@ -357,12 +372,16 @@ def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DETA
def prepare_coco_panoptic_annotation(
image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for DETA.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
......@@ -522,6 +541,7 @@ class DetaImageProcessor(BaseImageProcessor):
format: Optional[AnnotionFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETA model.
......@@ -530,11 +550,17 @@ class DetaImageProcessor(BaseImageProcessor):
if format == AnnotionFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(image, target, return_segmentation_masks)
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotionFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image, target, masks_path=masks_path, return_masks=return_segmentation_masks
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
......@@ -571,15 +597,32 @@ class DetaImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
The desired output size. Can contain keys `shortest_edge` and `longest_edge` or `height` and `width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
......@@ -587,7 +630,9 @@ class DetaImageProcessor(BaseImageProcessor):
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(image, size=size, resample=resample, data_format=data_format)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
......@@ -606,7 +651,11 @@ class DetaImageProcessor(BaseImageProcessor):
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
......@@ -621,8 +670,13 @@ class DetaImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format)
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
......@@ -639,18 +693,24 @@ class DetaImageProcessor(BaseImageProcessor):
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
......@@ -662,6 +722,7 @@ class DetaImageProcessor(BaseImageProcessor):
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
......@@ -683,17 +744,28 @@ class DetaImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images)
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format)
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images]
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -716,6 +788,7 @@ class DetaImageProcessor(BaseImageProcessor):
format: Optional[Union[str, AnnotionFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
......@@ -761,8 +834,17 @@ class DetaImageProcessor(BaseImageProcessor):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format):
The channel dimension format of the image. If not provided, it will be the same as the input image.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
......@@ -839,13 +921,22 @@ class DetaImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
......@@ -858,33 +949,47 @@ class DetaImageProcessor(BaseImageProcessor):
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image)
resized_image = self.resize(image, size=size, resample=resample)
resized_annotation = self.resize_annotation(target, orig_size, get_image_size(resized_image))
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [self.resize(image, size=size, resample=resample) for image in images]
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor) for image in images]
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [self.normalize(image, image_mean, image_std) for image in images]
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image))
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
data = self.pad(images, return_pixel_mask=True, data_format=data_format)
data = self.pad(
images, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format
)
else:
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
......
......@@ -121,7 +121,10 @@ def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, in
def get_resize_output_image_size(
input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
......@@ -135,8 +138,10 @@ def get_resize_output_image_size(
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image)
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
......@@ -203,23 +208,28 @@ def max_across_indices(values: Iterable[Any]) -> List[Any]:
# Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
def get_max_height_width(images: List[np.ndarray]) -> List[int]:
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
input_channel_dimension = infer_channel_dimension_format(images[0])
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_channel_dimension == ChannelDimension.FIRST:
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_channel_dimension == ChannelDimension.LAST:
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}")
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray:
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
......@@ -229,7 +239,7 @@ def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarr
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
......@@ -271,11 +281,16 @@ def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndar
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L50
def prepare_coco_detection_annotation(image, target, return_segmentation_masks: bool = False):
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DETR.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
......@@ -358,12 +373,16 @@ def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
def prepare_coco_panoptic_annotation(
image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for DETR.
"""
image_height, image_width = get_image_size(image)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
......@@ -822,6 +841,7 @@ class DetrImageProcessor(BaseImageProcessor):
format: Optional[AnnotionFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETR model.
......@@ -830,11 +850,17 @@ class DetrImageProcessor(BaseImageProcessor):
if format == AnnotionFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(image, target, return_segmentation_masks)
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotionFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image, target, masks_path=masks_path, return_masks=return_segmentation_masks
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
......@@ -867,11 +893,26 @@ class DetrImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
`height` and `width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
......@@ -883,7 +924,9 @@ class DetrImageProcessor(BaseImageProcessor):
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
......@@ -891,7 +934,9 @@ class DetrImageProcessor(BaseImageProcessor):
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(image, size=size, resample=resample, data_format=data_format)
image = resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
return image
def resize_annotation(
......@@ -909,7 +954,11 @@ class DetrImageProcessor(BaseImageProcessor):
# TODO (Amy) - update to use `rescale_factor` instead of `scale`
def rescale(
self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
......@@ -924,8 +973,13 @@ class DetrImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format)
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
"""
......@@ -940,18 +994,24 @@ class DetrImageProcessor(BaseImageProcessor):
output_size: Tuple[int, int],
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
......@@ -962,6 +1022,7 @@ class DetrImageProcessor(BaseImageProcessor):
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
......@@ -983,17 +1044,28 @@ class DetrImageProcessor(BaseImageProcessor):
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
pad_size = get_max_height_width(images)
pad_size = get_max_height_width(images, input_data_format=input_data_format)
padded_images = [
self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format)
self._pad_image(
image,
pad_size,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
for image in images
]
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images]
masks = [
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -1016,6 +1088,7 @@ class DetrImageProcessor(BaseImageProcessor):
format: Optional[Union[str, AnnotionFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
......@@ -1061,8 +1134,17 @@ class DetrImageProcessor(BaseImageProcessor):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format):
The channel dimension format of the image. If not provided, it will be the same as the input image.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
......@@ -1147,13 +1229,22 @@ class DetrImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
......@@ -1166,33 +1257,49 @@ class DetrImageProcessor(BaseImageProcessor):
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image)
resized_image = self.resize(image, size=size, max_size=max_size, resample=resample)
resized_annotation = self.resize_annotation(target, orig_size, get_image_size(resized_image))
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [self.resize(image, size=size, resample=resample) for image in images]
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor) for image in images]
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [self.normalize(image, image_mean, image_std) for image in images]
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image))
self.normalize_annotation(
annotation, get_image_size(image, input_data_format), input_data_format=input_data_format
)
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
data = self.pad(images, return_pixel_mask=True, data_format=data_format)
data = self.pad(
images, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format
)
else:
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"pixel_values": images}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
......
......@@ -32,6 +32,7 @@ from ...image_utils import (
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -122,7 +123,11 @@ class DonutImageProcessor(BaseImageProcessor):
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def align_long_axis(
self, image: np.ndarray, size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Align the long axis of the image to the longest axis of the specified size.
......@@ -132,11 +137,15 @@ class DonutImageProcessor(BaseImageProcessor):
The image to be aligned.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to align the long axis to.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The aligned image.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
if (output_width < output_height and input_width > input_height) or (
......@@ -145,7 +154,7 @@ class DonutImageProcessor(BaseImageProcessor):
image = np.rot90(image, 3)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
......@@ -155,6 +164,7 @@ class DonutImageProcessor(BaseImageProcessor):
size: Dict[str, int],
random_padding: bool = False,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad the image to the specified size.
......@@ -168,9 +178,11 @@ class DonutImageProcessor(BaseImageProcessor):
Whether to use random padding or not.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = size["height"], size["width"]
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
delta_width = output_width - input_width
delta_height = output_height - input_height
......@@ -186,7 +198,7 @@ class DonutImageProcessor(BaseImageProcessor):
pad_right = delta_width - pad_left
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
return pad(image, padding, data_format=data_format)
return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
def pad(self, *args, **kwargs):
logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
......@@ -198,6 +210,7 @@ class DonutImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -213,8 +226,10 @@ class DonutImageProcessor(BaseImageProcessor):
The resampling filter to use.
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
input_height, input_width = get_image_size(image)
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
# We always resize to the smallest of either the input or output size.
......@@ -230,7 +245,13 @@ class DonutImageProcessor(BaseImageProcessor):
height = int(input_height * width / input_width)
return resize(
image, size=(height, width), resample=resample, reducing_gap=2.0, data_format=data_format, **kwargs
image,
size=(height, width),
resample=resample,
reducing_gap=2.0,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def resize(
......@@ -239,6 +260,7 @@ class DonutImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -254,11 +276,22 @@ class DonutImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
shortest_edge = min(size["height"], size["width"])
output_size = get_resize_output_image_size(image, size=shortest_edge, default_to_square=False)
resized_image = resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
output_size = get_resize_output_image_size(
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
)
resized_image = resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return resized_image
def preprocess(
......@@ -278,6 +311,7 @@ class DonutImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -327,6 +361,12 @@ class DonutImageProcessor(BaseImageProcessor):
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -367,25 +407,45 @@ class DonutImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_align_long_axis:
images = [self.align_long_axis(image, size=size) for image in images]
images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_thumbnail:
images = [self.thumbnail(image=image, size=size) for image in images]
images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
if do_pad:
images = [self.pad_image(image=image, size=size, random_padding=random_padding) for image in images]
images = [
self.pad_image(
image=image, size=size, random_padding=random_padding, input_data_format=input_data_format
)
for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -28,6 +28,7 @@ from ...image_utils import (
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_torch_available,
is_torch_tensor,
make_list_of_images,
......@@ -48,7 +49,11 @@ logger = logging.get_logger(__name__)
def get_resize_output_image_size(
input_image: np.ndarray, output_size: Union[int, Iterable[int]], keep_aspect_ratio: bool, multiple: int
input_image: np.ndarray,
output_size: Union[int, Iterable[int]],
keep_aspect_ratio: bool,
multiple: int,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
def constraint_to_multiple_of(val, multiple, min_val=0, max_val=None):
x = round(val / multiple) * multiple
......@@ -63,7 +68,7 @@ def get_resize_output_image_size(
output_size = (output_size, output_size) if isinstance(output_size, int) else output_size
input_height, input_width = get_image_size(input_image)
input_height, input_width = get_image_size(input_image, input_data_format)
output_height, output_width = output_size
# determine new height and width
......@@ -97,7 +102,7 @@ class DPTImageProcessor(BaseImageProcessor):
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. Can
be overidden by `keep_aspect_ratio` in `preprocess`.
ensure_multiple_of (`int`, *optional*, defaults to `1`):
ensure_multiple_of (`int`, *optional*, defaults to 1):
If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Can be overidden
by `ensure_multiple_of` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
......@@ -156,6 +161,7 @@ class DPTImageProcessor(BaseImageProcessor):
ensure_multiple_of: int = 1,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -170,7 +176,7 @@ class DPTImageProcessor(BaseImageProcessor):
Target size of the output image.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved.
ensure_multiple_of (`int`, *optional*, defaults to `1`):
ensure_multiple_of (`int`, *optional*, defaults to 1):
The image is resized to a size that is a multiple of this value.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size
......@@ -179,6 +185,8 @@ class DPTImageProcessor(BaseImageProcessor):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
......@@ -188,8 +196,16 @@ class DPTImageProcessor(BaseImageProcessor):
output_size=(size["height"], size["width"]),
keep_aspect_ratio=keep_aspect_ratio,
multiple=ensure_multiple_of,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def preprocess(
self,
......@@ -206,6 +222,7 @@ class DPTImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -249,6 +266,12 @@ class DPTImageProcessor(BaseImageProcessor):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -282,16 +305,31 @@ class DPTImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......
......@@ -30,6 +30,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_batched,
to_numpy_array,
valid_images,
......@@ -116,6 +117,7 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -133,6 +135,8 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The resized image.
......@@ -140,13 +144,17 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
size = get_size_dict(size)
if "shortest_edge" in size:
size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}")
return resize(image, size=size, resample=resample, data_format=data_format, **kwargs)
return resize(
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
)
def preprocess(
self,
......@@ -163,6 +171,7 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
......@@ -205,6 +214,12 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
......@@ -241,19 +256,36 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size_dict, resample=resample) for image in images]
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -26,6 +26,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -123,6 +124,7 @@ class EfficientNetImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.NEAREST,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -140,6 +142,13 @@ class EfficientNetImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
......@@ -148,7 +157,14 @@ class EfficientNetImageProcessor(BaseImageProcessor):
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def rescale(
self,
......@@ -156,6 +172,7 @@ class EfficientNetImageProcessor(BaseImageProcessor):
scale: Union[int, float],
offset: bool = True,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
......@@ -177,8 +194,12 @@ class EfficientNetImageProcessor(BaseImageProcessor):
Whether to scale the image in both negative and positive directions.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
rescaled_image = rescale(image, scale=scale, data_format=data_format, **kwargs)
rescaled_image = rescale(
image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs
)
if offset:
rescaled_image = rescaled_image - 1
......@@ -202,6 +223,7 @@ class EfficientNetImageProcessor(BaseImageProcessor):
include_top: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -247,6 +269,12 @@ class EfficientNetImageProcessor(BaseImageProcessor):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
......@@ -287,22 +315,44 @@ class EfficientNetImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor, offset=rescale_offset) for image in images]
images = [
self.rescale(
image=image, scale=rescale_factor, offset=rescale_offset, input_data_format=input_data_format
)
for image in images
]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
if include_top:
images = [self.normalize(image=image, mean=[0, 0, 0], std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
self.normalize(image=image, mean=0, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -29,6 +29,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -338,6 +339,7 @@ class FlavaImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -355,6 +357,13 @@ class FlavaImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
......@@ -363,7 +372,14 @@ class FlavaImageProcessor(BaseImageProcessor):
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def map_pixels(self, image: np.ndarray) -> np.ndarray:
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
......@@ -383,6 +399,7 @@ class FlavaImageProcessor(BaseImageProcessor):
image_std: Optional[Union[float, List[float]]] = None,
do_map_pixels: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[ChannelDimension] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
......@@ -397,23 +414,27 @@ class FlavaImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size)
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
if do_map_pixels:
image = self.map_pixels(image)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def preprocess(
......@@ -452,6 +473,7 @@ class FlavaImageProcessor(BaseImageProcessor):
codebook_image_std: Optional[Iterable[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -533,6 +555,12 @@ class FlavaImageProcessor(BaseImageProcessor):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -615,6 +643,7 @@ class FlavaImageProcessor(BaseImageProcessor):
image_std=image_std,
do_map_pixels=False,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
......@@ -636,6 +665,7 @@ class FlavaImageProcessor(BaseImageProcessor):
image_std=codebook_image_std,
do_map_pixels=codebook_do_map_pixels,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
......
......@@ -25,6 +25,7 @@ from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -75,6 +76,7 @@ class GLPNImageProcessor(BaseImageProcessor):
size_divisor: int,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -95,15 +97,27 @@ class GLPNImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not set, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The resized image.
"""
height, width = get_image_size(image)
height, width = get_image_size(image, channel_dim=input_data_format)
# Rounds the height and width down to the closest multiple of size_divisor
new_h = height // size_divisor * size_divisor
new_w = width // size_divisor * size_divisor
image = resize(image, (new_h, new_w), resample=resample, data_format=data_format, **kwargs)
image = resize(
image,
(new_h, new_w),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
def preprocess(
......@@ -115,6 +129,7 @@ class GLPNImageProcessor(BaseImageProcessor):
do_rescale: Optional[bool] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
......@@ -144,6 +159,12 @@ class GLPNImageProcessor(BaseImageProcessor):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
......@@ -161,13 +182,22 @@ class GLPNImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(img) for img in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image, size_divisor=size_divisor, resample=resample) for image in images]
images = [
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, scale=1 / 255) for image in images]
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
......@@ -24,6 +24,7 @@ from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
......@@ -107,6 +108,7 @@ class ImageGPTImageProcessor(BaseImageProcessor):
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
......@@ -124,6 +126,13 @@ class ImageGPTImageProcessor(BaseImageProcessor):
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
......@@ -132,12 +141,20 @@ class ImageGPTImageProcessor(BaseImageProcessor):
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def normalize(
self,
image: np.ndarray,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Normalizes an images' pixel values to between [-1, 1].
......@@ -147,8 +164,10 @@ class ImageGPTImageProcessor(BaseImageProcessor):
Image to normalize.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
image = rescale(image=image, scale=1 / 127.5, data_format=data_format)
image = rescale(image=image, scale=1 / 127.5, data_format=data_format, input_data_format=input_data_format)
image = image - 1
return image
......@@ -163,6 +182,7 @@ class ImageGPTImageProcessor(BaseImageProcessor):
clusters: Optional[Union[List[List[int]], np.ndarray]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
......@@ -197,6 +217,12 @@ class ImageGPTImageProcessor(BaseImageProcessor):
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Only has an effect if `do_color_quantize` is set to `False`.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
......@@ -224,14 +250,21 @@ class ImageGPTImageProcessor(BaseImageProcessor):
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [self.normalize(image=image) for image in images]
images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
if do_color_quantize:
images = [to_channel_dimension_format(image, ChannelDimension.LAST) for image in images]
images = [to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
images = np.array(images)
images = color_quantize(images, clusters).reshape(images.shape[:-1])
......@@ -243,7 +276,10 @@ class ImageGPTImageProcessor(BaseImageProcessor):
# We need to convert back to a list of images to keep consistent behaviour across processors.
images = list(images)
else:
images = [to_channel_dimension_format(image, data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
data = {"input_ids": images}
return BatchFeature(data=data, tensor_type=return_tensors)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment