@@ -471,43 +471,28 @@ class TFDistilBertPreTrainedModel(TFPreTrainedModel):
...
@@ -471,43 +471,28 @@ class TFDistilBertPreTrainedModel(TFPreTrainedModel):
DISTILBERT_START_DOCSTRING=r"""
DISTILBERT_START_DOCSTRING=r"""
DistilBERT is a small, fast, cheap and light Transformer model
This model is a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ sub-class.
trained by distilling Bert base. It has 40% less parameters than
Use it as a regular TF 2.0 Keras Model and
`bert-base-uncased`, runs 60% faster while preserving over 95% of
Bert's performances as measured on the GLUE language understanding benchmark.
Here are the differences between the interface of Bert and DistilBert:
- DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
- DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
For more information on DistilBERT, please refer to our
`detailed blog post`_
This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
refer to the TF 2.0 documentation for all matter related to general usage and behavior.
refer to the TF 2.0 documentation for all matter related to general usage and behavior.
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having
all the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
If you choose this second option, there are three possibilities you can use to gather all the input Tensors
in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
**input_ids** ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices of input sequence tokens in the vocabulary.
The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
Indices can be obtained using :class:`transformers.BertTokenizer`.
**attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.encode_plus` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices.
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
Mask to nullify selected heads of the self-attention modules.
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
**inputs_embeds**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, embedding_dim)`, `optional`, defaults to :obj:`None`):
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
than the model's internal embedding lookup matrix.
training (:obj:`boolean`, `optional`, defaults to :obj:`False`):
Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them
(if set to :obj:`False`) for evaluation.
"""
"""
@add_start_docstrings(
@add_start_docstrings(
"The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.",
"The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.",