"sgl-router/git@developer.sourcefind.cn:change/sglang.git" did not exist on "86317c09e9196aa3ad7a1552803f592c668d3cb1"
Commit 6bc082da authored by thomwolf's avatar thomwolf
Browse files

updating examples

parent eb8fda51
......@@ -24,115 +24,20 @@ import os
import csv
import random
import logging
from tqdm import tqdm
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from sklearn.metrics import accuracy_score
from sklearn.utils import shuffle
from pytorch_pretrained_bert import OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, OpenAIAdam
# from analysis import rocstories as rocstories_analysis
# from datasets import rocstories
# from model_pytorch import DoubleHeadModel, load_openai_pretrained_model
# from opt import OpenAIAdam
# from text_utils import TextEncoder
# from utils import (encode_dataset, iter_data,
# ResultLogger, make_path)
# from loss import MultipleChoiceLossCompute
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def iter_apply(Xs, Ms, Ys):
# fns = [lambda x: np.concatenate(x, 0), lambda x: float(np.sum(x))]
logits = []
cost = 0
with torch.no_grad():
dh_model.eval()
for xmb, mmb, ymb in iter_data(Xs, Ms, Ys, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
clf_logits *= n
clf_losses = compute_loss_fct(XMB, YMB, MMB, clf_logits, only_return_losses=True)
clf_losses *= n
logits.append(clf_logits.to("cpu").numpy())
cost += clf_losses.sum().item()
logits = np.concatenate(logits, 0)
return logits, cost
def iter_predict(Xs, Ms):
logits = []
with torch.no_grad():
dh_model.eval()
for xmb, mmb in iter_data(Xs, Ms, n_batch=n_batch_train, truncate=False, verbose=True):
n = len(xmb)
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
_, clf_logits = dh_model(XMB)
logits.append(clf_logits.to("cpu").numpy())
logits = np.concatenate(logits, 0)
return logits
def log(save_dir, desc):
global best_score
print("Logging")
tr_logits, tr_cost = iter_apply(trX[:n_valid], trM[:n_valid], trY[:n_valid])
va_logits, va_cost = iter_apply(vaX, vaM, vaY)
tr_cost = tr_cost / len(trY[:n_valid])
va_cost = va_cost / n_valid
tr_acc = accuracy_score(trY[:n_valid], np.argmax(tr_logits, 1)) * 100.
va_acc = accuracy_score(vaY, np.argmax(va_logits, 1)) * 100.
logger.log(n_epochs=n_epochs, n_updates=n_updates, tr_cost=tr_cost, va_cost=va_cost, tr_acc=tr_acc, va_acc=va_acc)
print('%d %d %.3f %.3f %.2f %.2f' % (n_epochs, n_updates, tr_cost, va_cost, tr_acc, va_acc))
if submit:
score = va_acc
if score > best_score:
best_score = score
path = os.path.join(save_dir, desc, 'best_params')
torch.save(dh_model.state_dict(), make_path(path))
def predict(dataset, submission_dir):
filename = filenames[dataset]
pred_fn = pred_fns[dataset]
label_decoder = label_decoders[dataset]
predictions = pred_fn(iter_predict(teX, teM))
if label_decoder is not None:
predictions = [label_decoder[prediction] for prediction in predictions]
path = os.path.join(submission_dir, filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'w') as f:
f.write('{}\t{}\n'.format('index', 'prediction'))
for i, prediction in enumerate(predictions):
f.write('{}\t{}\n'.format(i, prediction))
def run_epoch():
for xmb, mmb, ymb in iter_data(*shuffle(trX, trM, trYt, random_state=np.random),
n_batch=n_batch_train, truncate=True, verbose=True):
global n_updates
dh_model.train()
XMB = torch.tensor(xmb, dtype=torch.long).to(device)
YMB = torch.tensor(ymb, dtype=torch.long).to(device)
MMB = torch.tensor(mmb).to(device)
lm_logits, clf_logits = dh_model(XMB)
compute_loss_fct(XMB, YMB, MMB, clf_logits, lm_logits)
n_updates += 1
if n_updates in [1000, 2000, 4000, 8000, 16000, 32000] and n_epochs == 0:
log(save_dir, desc)
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
......@@ -147,35 +52,43 @@ def load_rocstories_dataset(dataset_path):
output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
return output
def pre_process_dataset(encoded_dataset, max_len, start_token, delimiter_token, clf_token):
def pre_process_datasets(encoded_datasets, max_len, start_token, delimiter_token, clf_token):
""" Pre-process datasets containing lists of
tuples(story, 1st continuation, 2nd continuation, label)
In Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:
input_ids[batch, alternative, :] = [start_token] + story[:max_len] + [delimiter_token] + cont1[:max_len] + [clf_token]
"""
tensor_datasets = []
for dataset in encoded_datasets:
n_batch = len(dataset)
input_ids = np.zeros((n_batch, 2, max_len), dtype=np.int32)
mc_token_mask = np.zeros((n_batch, 2, max_len), dtype=np.int32)
lm_labels = np.full((n_batch, 2, max_len), -1, dtype=np.float32)
mc_labels = np.zeros((n_batch,), dtype=np.float32)
for i, (story, cont1, cont2, mc_label), in enumerate(encoded_dataset):
for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
with_cont1 = [start_token] + story[:max_len] + [delimiter_token] + cont1[:max_len] + [clf_token]
with_cont2 = [start_token] + story[:max_len] + [delimiter_token] + cont2[:max_len] + [clf_token]
xmb[i, 0, :len(with_cont1)] = with_cont1
xmb[i, 1, :len(with_cont2)] = with_cont2
input_ids[i, 0, :len(with_cont1)] = with_cont1
input_ids[i, 1, :len(with_cont2)] = with_cont2
mc_token_mask[i, 0, len(with_cont1) - 1] = 1
lm_labels[i, 0, :len(with_cont1)-1] = with_cont1[1:]
lm_labels[i, 1, :len(with_cont2)-1] = with_cont2[1:]
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_mask, lm_labels, mc_labels)
all_input_tensors = list(torch.tensor(t) for t in all_inputs)
return all_input_tensors
all_inputs = tuple(input_ids, mc_token_mask, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
return tensor_datasets
if __name__ == '__main__':
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='openai-gpt',
help='pretrained model name')
parser.add_argument('--data_dir', type=str, default='data/')
parser.add_argument('--train_dataset', type=str, default='cloze_test_val__spring2016 - cloze_test_ALL_val.tsv')
parser.add_argument('--eval_dataset', type=str, default='test_spring2016.tsv')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_train_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--eval_batch_size', type=int, default=16)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--learning_rate', type=float, default=6.25e-5)
parser.add_argument('--warmup_proportion', type=float, default=0.002)
......@@ -194,7 +107,7 @@ if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device", device, "n_gpu", n_gpu)
logger.info("device: {}, n_gpu {}".format(device, n_gpu))
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
......@@ -204,22 +117,34 @@ if __name__ == '__main__':
special_tokens_ids = list(tokenizer.convert_tokens_to_ids(token) for token in special_tokens)
model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, num_special_tokens=len(special_tokens))
# Load the dataset and prepare the inputs
# Load and encode the datasets
logger.info("Encoding dataset...")
dataset = load_rocstories_dataset(args.dataset_path)
tokenized_dataset = list(list(tokenizer.tokenize(x) for x in instance) for instance in dataset)
encoded_dataset = list(list(tokenizer.convert_tokens_to_ids(x) for x in instance) for instance in tokenized_dataset)
max_input_length = max(len(story)+max(len(cont1), len(cont2))+3 for story, cont1, cont2, _ in encoded_dataset)
train_dataset = load_rocstories_dataset(args.train_dataset)
eval_datset = load_rocstories_dataset(args.eval_datset)
datasets = (train_dataset, eval_datset)
tokenized_datasets = tuple(list(list(tokenizer.tokenize(x) for x in instance)
for instance in dataset) for dataset in datasets)
encoded_datasets = tuple(list(list(tokenizer.convert_tokens_to_ids(x) for x in instance)
for instance in dataset) for dataset in tokenized_datasets)
# Compute the mex input length for the Transformer
max_input_length = max(len(story) + max(len(cont1), len(cont2)) + 3 \
for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
max_input_length = min(max_input_length, model.config.n_positions) # Max size of input for the pre-trained model
max_sub_part_length = max_input_length // 2 - 2
# Prepare dataloader
dataset_tensors = pre_process_dataset(encoded_dataset, max_sub_part_length, *special_tokens_ids)
train_data = TensorDataset(*dataset_tensors)
# Prepare inputs tensors and dataloaders
tensor_datasets = pre_process_datasets(encoded_datasets, max_sub_part_length, *special_tokens_ids)
train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]
train_data = TensorDataset(*train_tensor_dataset)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
eval_data = TensorDataset(*eval_tensor_dataset)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
......@@ -232,11 +157,10 @@ if __name__ == '__main__':
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
weight_decay=arsg.weight_decay,
weight_decay=args.weight_decay,
t_total=num_train_optimization_steps)
if args.do_train:
global_step = 0
nb_tr_steps = 0
tr_loss = 0
model.train()
......@@ -249,6 +173,7 @@ if __name__ == '__main__':
losses = model(input_ids, mc_token_mask, lm_labels, mc_labels)
loss = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
......@@ -261,44 +186,26 @@ if __name__ == '__main__':
# Load a trained model that you have fine-tuned
model_state_dict = torch.load(output_model_file)
model = OpenAIGPTDoubleHeadsModel(args.mode, state_dict=model_state_dict, num_labels=num_labels)
model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name, state_dict=model_state_dict,
num_special_tokens=len(special_tokens))
model.to(device)
if args.do_eval:
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_mask, lm_labels, mc_labels = batch
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
_, mc_loss = model(input_ids, mc_token_mask, lm_labels, mc_labels)
_, mc_logits = model(input_ids, mc_token_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
mc_logits = mc_logits.detach().cpu().numpy()
mc_labels = mc_labels.to('cpu').numpy()
tmp_eval_accuracy = accuracy(mc_logits, mc_labels)
eval_loss += tmp_eval_loss.mean().item()
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
......@@ -306,11 +213,10 @@ if __name__ == '__main__':
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
loss = tr_loss/nb_tr_steps if args.do_train else None
train_loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': loss}
'train_loss': train_loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
......@@ -319,26 +225,5 @@ if __name__ == '__main__':
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
if __name__ == '__main__':
main()
n_updates = 0
n_epochs = 0
if dataset != 'stsb':
trYt = trY
if submit:
path = os.path.join(save_dir, desc, 'best_params')
torch.save(dh_model.state_dict(), make_path(path))
best_score = 0
for i in range(args.n_iter):
print("running epoch", i)
run_epoch()
n_epochs += 1
log(save_dir, desc)
if submit:
path = os.path.join(save_dir, desc, 'best_params')
dh_model.load_state_dict(torch.load(path))
predict(dataset, args.submission_dir)
if args.analysis:
rocstories_analysis(data_dir, os.path.join(args.submission_dir, 'ROCStories.tsv'),
os.path.join(log_dir, 'rocstories.jsonl'))
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model evaluation script.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
import time
import math
import torch
from pytorch_pretrained_bert import TransfoXLModel, TransfoXLCorpus
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
help='pretrained model name')
parser.add_argument('--split', type=str, default='test',
choices=['all', 'valid', 'test'],
help='which split to evaluate')
parser.add_argument('--batch_size', type=int, default=10,
help='batch size')
parser.add_argument('--tgt_len', type=int, default=128,
help='number of tokens to predict')
parser.add_argument('--ext_len', type=int, default=0,
help='length of the extended context')
parser.add_argument('--mem_len', type=int, default=1600,
help='length of the retained previous heads')
parser.add_argument('--clamp_len', type=int, default=1000,
help='max positional embedding index')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--work_dir', type=str, required=True,
help='path to the work_dir')
parser.add_argument('--no_log', action='store_true',
help='do not log the eval result')
parser.add_argument('--same_length', action='store_true',
help='set same length attention with masking')
args = parser.parse_args()
assert args.ext_len >= 0, 'extended context length must be non-negative'
device = torch.device("cuda" if args.cuda else "cpu")
# Load a pre-processed dataset
# You can also build the corpus yourself using TransfoXLCorpus methods
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script )
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab)
va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
# Load a pre-trained model
model = TransfoXLModel.from_pretrained(args.model_name)
model = model.to(device)
logger.info('Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}'.format(
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len))
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
if args.clamp_len > 0:
model.clamp_len = args.clamp_len
if args.same_length:
model.same_length = True
###############################################################################
# Evaluation code
###############################################################################
def evaluate(eval_iter):
# Turn on evaluation mode which disables dropout.
model.eval()
total_len, total_loss = 0, 0.
start_time = time.time()
with torch.no_grad():
mems = tuple()
for idx, (data, target, seq_len) in enumerate(eval_iter):
ret = model(data, target, *mems)
loss, mems = ret
loss = loss.mean()
total_loss += seq_len * loss.item()
total_len += seq_len
total_time = time.time() - start_time
logger.info('Time : {:.2f}s, {:.2f}ms/segment'.format(
total_time, 1000 * total_time / (idx+1)))
return total_loss / total_len
# Run on test data.
if args.split == 'all':
test_loss = evaluate(te_iter)
valid_loss = evaluate(va_iter)
elif args.split == 'valid':
valid_loss = evaluate(va_iter)
test_loss = None
elif args.split == 'test':
test_loss = evaluate(te_iter)
valid_loss = None
def format_log(loss, split):
log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
split, loss, math.exp(loss))
return log_str
log_str = ''
if valid_loss is not None:
log_str += format_log(valid_loss, 'valid')
if test_loss is not None:
log_str += format_log(test_loss, 'test')
logger.info('=' * 100)
logger.info(log_str)
logger.info('=' * 100)
if __name__ == '__main__':
main()
\ No newline at end of file
This diff is collapsed.
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model evaluation script.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import argparse
import logging
import time
import math
import torch
from pytorch_pretrained_bert import TransfoXLModel, TransfoXLCorpus
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
help='pretrained model name')
parser.add_argument('--split', type=str, default='test',
choices=['all', 'valid', 'test'],
help='which split to evaluate')
parser.add_argument('--batch_size', type=int, default=10,
help='batch size')
parser.add_argument('--tgt_len', type=int, default=128,
help='number of tokens to predict')
parser.add_argument('--ext_len', type=int, default=0,
help='length of the extended context')
parser.add_argument('--mem_len', type=int, default=1600,
help='length of the retained previous heads')
parser.add_argument('--clamp_len', type=int, default=1000,
help='max positional embedding index')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--work_dir', type=str, required=True,
help='path to the work_dir')
parser.add_argument('--no_log', action='store_true',
help='do not log the eval result')
parser.add_argument('--same_length', action='store_true',
help='set same length attention with masking')
args = parser.parse_args()
assert args.ext_len >= 0, 'extended context length must be non-negative'
device = torch.device("cuda" if args.cuda else "cpu")
# Load a pre-processed dataset
# You can also build the corpus yourself using TransfoXLCorpus methods
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script )
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab)
va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
# Load a pre-trained model
model = TransfoXLModel.from_pretrained(args.model_name)
model = model.to(device)
logger.info('Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}'.format(
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len))
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
if args.clamp_len > 0:
model.clamp_len = args.clamp_len
if args.same_length:
model.same_length = True
###############################################################################
# Evaluation code
###############################################################################
def evaluate(eval_iter):
# Turn on evaluation mode which disables dropout.
model.eval()
total_len, total_loss = 0, 0.
start_time = time.time()
with torch.no_grad():
mems = tuple()
for idx, (data, target, seq_len) in enumerate(eval_iter):
ret = model(data, target, *mems)
loss, mems = ret
loss = loss.mean()
total_loss += seq_len * loss.item()
total_len += seq_len
total_time = time.time() - start_time
logger.info('Time : {:.2f}s, {:.2f}ms/segment'.format(
total_time, 1000 * total_time / (idx+1)))
return total_loss / total_len
# Run on test data.
if args.split == 'all':
test_loss = evaluate(te_iter)
valid_loss = evaluate(va_iter)
elif args.split == 'valid':
valid_loss = evaluate(va_iter)
test_loss = None
elif args.split == 'test':
test_loss = evaluate(te_iter)
valid_loss = None
def format_log(loss, split):
log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
split, loss, math.exp(loss))
return log_str
log_str = ''
if valid_loss is not None:
log_str += format_log(valid_loss, 'valid')
if test_loss is not None:
log_str += format_log(test_loss, 'test')
logger.info('=' * 100)
logger.info(log_str)
logger.info('=' * 100)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment