@@ -249,7 +249,7 @@ The results are the following:
Run `bash run_pl.sh` from the `glue` directory. This will also install `pytorch-lightning` and the requirements in `examples/requirements.txt`. It is a shell pipeline that will automatically download, pre-process the data and run the specified models. Logs are saved in `lightning_logs` directory.
Pass `--n_gpu` flag to change the number of GPUs. Default uses 1. At the end, the expected results are:
Pass `--gpus` flag to change the number of GPUs. Default uses 1. At the end, the expected results are:
```
TEST RESULTS {'val_loss': tensor(0.0707), 'precision': 0.852427800698191, 'recall': 0.869537067011978, 'f1': 0.8608974358974358}
...
...
@@ -294,7 +294,3 @@ Training with the previously defined hyper-parameters yields the following resul
@@ -134,7 +134,7 @@ On the test dataset the following results could be achieved:
Run `bash run_pl.sh` from the `ner` directory. This would also install `pytorch-lightning` and the `examples/requirements.txt`. It is a shell pipeline which would automatically download, pre-process the data and run the models in `germeval-model` directory. Logs are saved in `lightning_logs` directory.
Pass `--n_gpu` flag to change the number of GPUs. Default uses 1. At the end, the expected results are: `TEST RESULTS {'val_loss': tensor(0.0707), 'precision': 0.852427800698191, 'recall': 0.869537067011978, 'f1': 0.8608974358974358}`
Pass `--gpus` flag to change the number of GPUs. Default uses 1. At the end, the expected results are: `TEST RESULTS {'val_loss': tensor(0.0707), 'precision': 0.852427800698191, 'recall': 0.869537067011978, 'f1': 0.8608974358974358}`