Unverified Commit 640e1b6c authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Remove tokenizers from the doc table (#24963)

parent 0511369a
...@@ -278,205 +278,205 @@ Flax), PyTorch, and/or TensorFlow. ...@@ -278,205 +278,205 @@ Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!--> <!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support | | Model | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:| |:-----------------------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ | | ALBERT | ✅ | ✅ | ✅ |
| ALIGN | ❌ | ❌ | ✅ | ❌ | ❌ | | ALIGN | ✅ | ❌ | ❌ |
| AltCLIP | ❌ | ❌ | ✅ | ❌ | ❌ | | AltCLIP | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Audio Spectrogram Transformer | ✅ | ❌ | ❌ |
| Autoformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Autoformer | ✅ | ❌ | ❌ |
| Bark | ❌ | ❌ | ✅ | ❌ | ❌ | | Bark | ✅ | ❌ | ❌ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ | | BART | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ | | BEiT | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ | | BERT | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ | | Bert Generation | ✅ | ❌ | ❌ |
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ | | BigBird | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ | | BigBird-Pegasus | ✅ | ❌ | ❌ |
| BioGpt | ✅ | ❌ | ✅ | ❌ | ❌ | | BioGpt | ✅ | ❌ | ❌ |
| BiT | ❌ | ❌ | ✅ | ❌ | ❌ | | BiT | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ | | Blenderbot | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ | | BlenderbotSmall | ✅ | ✅ | ✅ |
| BLIP | ❌ | ❌ | ✅ | ✅ | ❌ | | BLIP | ✅ | ✅ | ❌ |
| BLIP-2 | ❌ | ❌ | ✅ | ❌ | ❌ | | BLIP-2 | ✅ | ❌ | ❌ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ | | BLOOM | ✅ | ❌ | ❌ |
| BridgeTower | ❌ | ❌ | ✅ | ❌ | ❌ | | BridgeTower | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ | | CamemBERT | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ | | CANINE | ✅ | ❌ | ❌ |
| Chinese-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ | | Chinese-CLIP | ✅ | ❌ | ❌ |
| CLAP | ❌ | ❌ | ✅ | ❌ | ❌ | | CLAP | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ | | CLIP | ✅ | ✅ | ✅ |
| CLIPSeg | ❌ | ❌ | ✅ | ❌ | ❌ | | CLIPSeg | ✅ | ❌ | ❌ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ | | CodeGen | ✅ | ❌ | ❌ |
| Conditional DETR | ❌ | ❌ | ✅ | ❌ | ❌ | | Conditional DETR | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ | | ConvBERT | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ | | ConvNeXT | ✅ | ✅ | ❌ |
| ConvNeXTV2 | ❌ | ❌ | ✅ | ❌ | ❌ | | ConvNeXTV2 | ✅ | ❌ | ❌ |
| CPM-Ant | ✅ | ❌ | ✅ | ❌ | ❌ | | CPM-Ant | ✅ | ❌ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ | | CTRL | ✅ | ✅ | ❌ |
| CvT | ❌ | ❌ | ✅ | ✅ | ❌ | | CvT | ✅ | ✅ | ❌ |
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ | | Data2VecAudio | ✅ | ❌ | ❌ |
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ | | Data2VecText | ✅ | ❌ | ❌ |
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ | | Data2VecVision | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ | | DeBERTa | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ | | DeBERTa-v2 | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Decision Transformer | ✅ | ❌ | ❌ |
| Deformable DETR | ❌ | ❌ | ✅ | ❌ | ❌ | | Deformable DETR | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ | | DeiT | ✅ | ✅ | ❌ |
| DETA | ❌ | ❌ | ✅ | ❌ | ❌ | | DETA | ✅ | ❌ | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ | | DETR | ✅ | ❌ | ❌ |
| DiNAT | ❌ | ❌ | ✅ | ❌ | ❌ | | DiNAT | ✅ | ❌ | ❌ |
| DINOv2 | ❌ | ❌ | ✅ | ❌ | ❌ | | DINOv2 | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ | | DistilBERT | ✅ | ✅ | ✅ |
| DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ | | DonutSwin | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ | | DPR | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ | | DPT | ✅ | ❌ | ❌ |
| EfficientFormer | ❌ | ❌ | ✅ | ✅ | ❌ | | EfficientFormer | ✅ | ✅ | ❌ |
| EfficientNet | ❌ | ❌ | ✅ | ❌ | ❌ | | EfficientNet | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ | | ELECTRA | ✅ | ✅ | ✅ |
| EnCodec | ❌ | ❌ | ✅ | ❌ | ❌ | | EnCodec | ✅ | ❌ | ❌ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ | | Encoder decoder | ✅ | ✅ | ✅ |
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ | | ERNIE | ✅ | ❌ | ❌ |
| ErnieM | ✅ | ❌ | ✅ | ❌ | ❌ | | ErnieM | ✅ | ❌ | ❌ |
| ESM | ✅ | ❌ | ✅ | ✅ | ❌ | | ESM | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ | | FairSeq Machine-Translation | ✅ | ❌ | ❌ |
| Falcon | ❌ | ❌ | ✅ | ❌ | ❌ | | Falcon | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ | | FlauBERT | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ | | FLAVA | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ | | FNet | ✅ | ❌ | ❌ |
| FocalNet | ❌ | ❌ | ✅ | ❌ | ❌ | | FocalNet | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ | | Funnel Transformer | ✅ | ✅ | ❌ |
| GIT | ❌ | ❌ | ✅ | ❌ | ❌ | | GIT | ✅ | ❌ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ | | GLPN | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ | | GPT Neo | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ | | GPT NeoX | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ✅ | ❌ | ❌ | | GPT NeoX Japanese | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ | | GPT-J | ✅ | ✅ | ✅ |
| GPT-Sw3 | ✅ | ✅ | ✅ | ✅ | ✅ | | GPT-Sw3 | ✅ | ✅ | ✅ |
| GPTBigCode | ❌ | ❌ | ✅ | ❌ | ❌ | | GPTBigCode | ✅ | ❌ | ❌ |
| GPTSAN-japanese | ✅ | ❌ | ✅ | ❌ | ❌ | | GPTSAN-japanese | ✅ | ❌ | ❌ |
| Graphormer | ❌ | ❌ | ✅ | ❌ | ❌ | | Graphormer | ✅ | ❌ | ❌ |
| GroupViT | ❌ | ❌ | ✅ | ✅ | ❌ | | GroupViT | ✅ | ✅ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ | | Hubert | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ | | I-BERT | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ | | ImageGPT | ✅ | ❌ | ❌ |
| Informer | ❌ | ❌ | ✅ | ❌ | ❌ | | Informer | ✅ | ❌ | ❌ |
| InstructBLIP | ❌ | ❌ | ✅ | ❌ | ❌ | | InstructBLIP | ✅ | ❌ | ❌ |
| Jukebox | ✅ | ❌ | ✅ | ❌ | ❌ | | Jukebox | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ | | LayoutLM | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ | | LayoutLMv2 | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ✅ | ✅ | ❌ | | LayoutLMv3 | ✅ | ✅ | ❌ |
| LED | ✅ | ✅ | ✅ | ✅ | ❌ | | LED | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ | | LeViT | ✅ | ❌ | ❌ |
| LiLT | ❌ | ❌ | ✅ | ❌ | ❌ | | LiLT | ✅ | ❌ | ❌ |
| LLaMA | ✅ | ✅ | ✅ | ❌ | ❌ | | LLaMA | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ | | Longformer | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ | | LongT5 | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ | | LUKE | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ | | LXMERT | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ | | M-CTC-T | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ | | M2M100 | ✅ | ❌ | ❌ |
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ | | Marian | ✅ | ✅ | ✅ |
| MarkupLM | ✅ | ✅ | ✅ | ❌ | ❌ | | MarkupLM | ✅ | ❌ | ❌ |
| Mask2Former | ❌ | ❌ | ✅ | ❌ | ❌ | | Mask2Former | ✅ | ❌ | ❌ |
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ | | MaskFormer | ✅ | ❌ | ❌ |
| MaskFormerSwin | ❌ | ❌ | ❌ | ❌ | ❌ | | MaskFormerSwin | ❌ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ | | mBART | ✅ | ✅ | ✅ |
| MEGA | ❌ | ❌ | ✅ | ❌ | ❌ | | MEGA | ✅ | ❌ | ❌ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ | | Megatron-BERT | ✅ | ❌ | ❌ |
| MGP-STR | ✅ | ❌ | ✅ | ❌ | ❌ | | MGP-STR | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ | | MobileBERT | ✅ | ✅ | ❌ |
| MobileNetV1 | ❌ | ❌ | ✅ | ❌ | ❌ | | MobileNetV1 | ✅ | ❌ | ❌ |
| MobileNetV2 | ❌ | ❌ | ✅ | ❌ | ❌ | | MobileNetV2 | ✅ | ❌ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ | | MobileViT | ✅ | ✅ | ❌ |
| MobileViTV2 | ❌ | ❌ | ✅ | ❌ | ❌ | | MobileViTV2 | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ | | MPNet | ✅ | ✅ | ❌ |
| MRA | ❌ | ❌ | ✅ | ❌ | ❌ | | MRA | ✅ | ❌ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ | | MT5 | ✅ | ✅ | ✅ |
| MusicGen | ❌ | ❌ | ✅ | ❌ | ❌ | | MusicGen | ✅ | ❌ | ❌ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ | | MVP | ✅ | ❌ | ❌ |
| NAT | ❌ | ❌ | ✅ | ❌ | ❌ | | NAT | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ | | Nezha | ✅ | ❌ | ❌ |
| NLLB-MOE | ❌ | ❌ | ✅ | ❌ | ❌ | | NLLB-MOE | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Nyströmformer | ✅ | ❌ | ❌ |
| OneFormer | ❌ | ❌ | ✅ | ❌ | ❌ | | OneFormer | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ | | OpenAI GPT | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ | | OpenAI GPT-2 | ✅ | ✅ | ✅ |
| OpenLlama | ❌ | ❌ | ✅ | ❌ | ❌ | | OpenLlama | ✅ | ❌ | ❌ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ | | OPT | ✅ | ✅ | ✅ |
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ | | OWL-ViT | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ | | Pegasus | ✅ | ✅ | ✅ |
| PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ | | PEGASUS-X | ✅ | ❌ | ❌ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ | | Perceiver | ✅ | ❌ | ❌ |
| Pix2Struct | ❌ | ❌ | ✅ | ❌ | ❌ | | Pix2Struct | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ | | PLBart | ✅ | ❌ | ❌ |
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ | | PoolFormer | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ | | ProphetNet | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ | | QDQBert | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ | | RAG | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ | | REALM | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ | | Reformer | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | ✅ | ✅ | | RegNet | ✅ | ✅ | ✅ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ | | RemBERT | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | ✅ | ✅ | | ResNet | ✅ | ✅ | ✅ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ | | RetriBERT | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ | | RoBERTa | ✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm | ❌ | ❌ | ✅ | ✅ | ✅ | | RoBERTa-PreLayerNorm | ✅ | ✅ | ✅ |
| RoCBert | ✅ | ❌ | ✅ | ❌ | ❌ | | RoCBert | ✅ | ❌ | ❌ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ | | RoFormer | ✅ | ✅ | ✅ |
| RWKV | ❌ | ❌ | ✅ | ❌ | ❌ | | RWKV | ✅ | ❌ | ❌ |
| SAM | ❌ | ❌ | ✅ | ✅ | ❌ | | SAM | ✅ | ✅ | ❌ |
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ | | SegFormer | ✅ | ✅ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ | | SEW | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ | | SEW-D | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ | | Speech Encoder decoder | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ | | Speech2Text | ✅ | ✅ | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ | | Speech2Text2 | ❌ | ❌ | ❌ |
| SpeechT5 | ✅ | ❌ | ✅ | ❌ | ❌ | | SpeechT5 | ✅ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ | | Splinter | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ | | SqueezeBERT | ✅ | ❌ | ❌ |
| SwiftFormer | ❌ | ❌ | ✅ | ❌ | ❌ | | SwiftFormer | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ | | Swin Transformer | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ | | Swin Transformer V2 | ✅ | ❌ | ❌ |
| Swin2SR | ❌ | ❌ | ✅ | ❌ | ❌ | | Swin2SR | ✅ | ❌ | ❌ |
| SwitchTransformers | ❌ | ❌ | ✅ | ❌ | ❌ | | SwitchTransformers | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ | | T5 | ✅ | ✅ | ✅ |
| Table Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Table Transformer | ✅ | ❌ | ❌ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ | | TAPAS | ✅ | ✅ | ❌ |
| Time Series Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Time Series Transformer | ✅ | ❌ | ❌ |
| TimeSformer | ❌ | ❌ | ✅ | ❌ | ❌ | | TimeSformer | ✅ | ❌ | ❌ |
| TimmBackbone | ❌ | ❌ | ❌ | ❌ | ❌ | | TimmBackbone | ❌ | ❌ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Trajectory Transformer | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ | | Transformer-XL | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ | | TrOCR | ✅ | ❌ | ❌ |
| TVLT | ❌ | ❌ | ✅ | ❌ | ❌ | | TVLT | ✅ | ❌ | ❌ |
| UMT5 | ❌ | ❌ | ✅ | ❌ | ❌ | | UMT5 | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ | | UniSpeech | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ | | UniSpeechSat | ✅ | ❌ | ❌ |
| UPerNet | ❌ | ❌ | ✅ | ❌ | ❌ | | UPerNet | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ | | VAN | ✅ | ❌ | ❌ |
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ | | VideoMAE | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ | | ViLT | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ | | Vision Encoder decoder | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ✅ | ✅ | | VisionTextDualEncoder | ✅ | ✅ | ✅ |
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ | | VisualBERT | ✅ | ❌ | ❌ |
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ | | ViT | ✅ | ✅ | ✅ |
| ViT Hybrid | ❌ | ❌ | ✅ | ❌ | ❌ | | ViT Hybrid | ✅ | ❌ | ❌ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ | | ViTMAE | ✅ | ✅ | ❌ |
| ViTMSN | ❌ | ❌ | ✅ | ❌ | ❌ | | ViTMSN | ✅ | ❌ | ❌ |
| ViViT | ❌ | ❌ | ✅ | ❌ | ❌ | | ViViT | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ | | Wav2Vec2 | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ | | Wav2Vec2-Conformer | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ | | WavLM | ✅ | ❌ | ❌ |
| Whisper | ✅ | ✅ | ✅ | ✅ | ✅ | | Whisper | ✅ | ✅ | ✅ |
| X-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ | | X-CLIP | ✅ | ❌ | ❌ |
| X-MOD | ❌ | ❌ | ✅ | ❌ | ❌ | | X-MOD | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ✅ | ✅ | | XGLM | ✅ | ✅ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ | | XLM | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ | | XLM-ProphetNet | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ | | XLM-RoBERTa | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ | | XLM-RoBERTa-XL | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ | | XLNet | ✅ | ✅ | ❌ |
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ | | YOLOS | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ | | YOSO | ✅ | ❌ | ❌ |
<!-- End table--> <!-- End table-->
...@@ -93,8 +93,6 @@ def get_model_table_from_auto_modules(): ...@@ -93,8 +93,6 @@ def get_model_table_from_auto_modules():
model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()} model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
slow_tokenizers = collections.defaultdict(bool)
fast_tokenizers = collections.defaultdict(bool)
pt_models = collections.defaultdict(bool) pt_models = collections.defaultdict(bool)
tf_models = collections.defaultdict(bool) tf_models = collections.defaultdict(bool)
flax_models = collections.defaultdict(bool) flax_models = collections.defaultdict(bool)
...@@ -102,13 +100,7 @@ def get_model_table_from_auto_modules(): ...@@ -102,13 +100,7 @@ def get_model_table_from_auto_modules():
# Let's lookup through all transformers object (once). # Let's lookup through all transformers object (once).
for attr_name in dir(transformers_module): for attr_name in dir(transformers_module):
lookup_dict = None lookup_dict = None
if attr_name.endswith("Tokenizer"): if _re_tf_models.match(attr_name) is not None:
lookup_dict = slow_tokenizers
attr_name = attr_name[:-9]
elif attr_name.endswith("TokenizerFast"):
lookup_dict = fast_tokenizers
attr_name = attr_name[:-13]
elif _re_tf_models.match(attr_name) is not None:
lookup_dict = tf_models lookup_dict = tf_models
attr_name = _re_tf_models.match(attr_name).groups()[0] attr_name = _re_tf_models.match(attr_name).groups()[0]
elif _re_flax_models.match(attr_name) is not None: elif _re_flax_models.match(attr_name) is not None:
...@@ -129,7 +121,7 @@ def get_model_table_from_auto_modules(): ...@@ -129,7 +121,7 @@ def get_model_table_from_auto_modules():
# Let's build that table! # Let's build that table!
model_names = list(model_name_to_config.keys()) model_names = list(model_name_to_config.keys())
model_names.sort(key=str.lower) model_names.sort(key=str.lower)
columns = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
widths = [len(c) + 2 for c in columns] widths = [len(c) + 2 for c in columns]
widths[0] = max([len(name) for name in model_names]) + 2 widths[0] = max([len(name) for name in model_names]) + 2
...@@ -144,8 +136,6 @@ def get_model_table_from_auto_modules(): ...@@ -144,8 +136,6 @@ def get_model_table_from_auto_modules():
prefix = model_name_to_prefix[name] prefix = model_name_to_prefix[name]
line = [ line = [
name, name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]], check[pt_models[prefix]],
check[tf_models[prefix]], check[tf_models[prefix]],
check[flax_models[prefix]], check[flax_models[prefix]],
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment