Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
640e1b6c
Unverified
Commit
640e1b6c
authored
Jul 21, 2023
by
Sylvain Gugger
Committed by
GitHub
Jul 21, 2023
Browse files
Remove tokenizers from the doc table (#24963)
parent
0511369a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
202 additions
and
212 deletions
+202
-212
docs/source/en/index.md
docs/source/en/index.md
+200
-200
utils/check_table.py
utils/check_table.py
+2
-12
No files found.
docs/source/en/index.md
View file @
640e1b6c
...
@@ -278,205 +278,205 @@ Flax), PyTorch, and/or TensorFlow.
...
@@ -278,205 +278,205 @@ Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model |
Tokenizer slow | Tokenizer fast |
PyTorch support | TensorFlow support | Flax Support |
| Model | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:--------------
:|:--------------:|:--------------
-:|:------------------:|:------------:|
|:-----------------------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅
| ✅ | ✅
| ✅ | ✅ |
| ALBERT | ✅ | ✅ | ✅ |
| ALIGN |
❌ | ❌ |
✅ | ❌ | ❌ |
| ALIGN | ✅ | ❌ | ❌ |
| AltCLIP |
❌ | ❌ |
✅ | ❌ | ❌ |
| AltCLIP | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ✅ | ❌ | ❌ |
| Autoformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Autoformer | ✅ | ❌ | ❌ |
| Bark |
❌ | ❌ |
✅ | ❌ | ❌ |
| Bark | ✅ | ❌ | ❌ |
| BART | ✅
| ✅ | ✅
| ✅ | ✅ |
| BART | ✅ | ✅ | ✅ |
| BEiT |
❌ | ❌ |
✅ | ❌ | ✅ |
| BEiT | ✅ | ❌ | ✅ |
| BERT | ✅
| ✅ | ✅
| ✅ | ✅ |
| BERT | ✅ | ✅ | ✅ |
| Bert Generation | ✅
| ❌ | ✅
| ❌ | ❌ |
| Bert Generation | ✅ | ❌ | ❌ |
| BigBird | ✅
| ✅ | ✅
| ❌ | ✅ |
| BigBird | ✅ | ❌ | ✅ |
| BigBird-Pegasus |
❌ | ❌ |
✅ | ❌ | ❌ |
| BigBird-Pegasus | ✅ | ❌ | ❌ |
| BioGpt | ✅
| ❌ | ✅
| ❌ | ❌ |
| BioGpt | ✅ | ❌ | ❌ |
| BiT |
❌ | ❌ |
✅ | ❌ | ❌ |
| BiT | ✅ | ❌ | ❌ |
| Blenderbot | ✅
| ✅ | ✅
| ✅ | ✅ |
| Blenderbot | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅
| ✅ | ✅
| ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ |
| BLIP |
❌ | ❌ |
✅ | ✅ | ❌ |
| BLIP | ✅ | ✅ | ❌ |
| BLIP-2 |
❌ | ❌ |
✅ | ❌ | ❌ |
| BLIP-2 | ✅ | ❌ | ❌ |
| BLOOM |
❌ | ✅ |
✅ | ❌ | ❌ |
| BLOOM | ✅ | ❌ | ❌ |
| BridgeTower |
❌ | ❌ |
✅ | ❌ | ❌ |
| BridgeTower | ✅ | ❌ | ❌ |
| CamemBERT | ✅
| ✅ | ✅
| ✅ | ❌ |
| CamemBERT | ✅ | ✅ | ❌ |
| CANINE | ✅
| ❌ | ✅
| ❌ | ❌ |
| CANINE | ✅ | ❌ | ❌ |
| Chinese-CLIP |
❌ | ❌ |
✅ | ❌ | ❌ |
| Chinese-CLIP | ✅ | ❌ | ❌ |
| CLAP |
❌ | ❌ |
✅ | ❌ | ❌ |
| CLAP | ✅ | ❌ | ❌ |
| CLIP | ✅
| ✅ | ✅
| ✅ | ✅ |
| CLIP | ✅ | ✅ | ✅ |
| CLIPSeg |
❌ | ❌ |
✅ | ❌ | ❌ |
| CLIPSeg | ✅ | ❌ | ❌ |
| CodeGen | ✅
| ✅ | ✅
| ❌ | ❌ |
| CodeGen | ✅ | ❌ | ❌ |
| Conditional DETR |
❌ | ❌ |
✅ | ❌ | ❌ |
| Conditional DETR | ✅ | ❌ | ❌ |
| ConvBERT | ✅
| ✅ | ✅
| ✅ | ❌ |
| ConvBERT | ✅ | ✅ | ❌ |
| ConvNeXT |
❌ | ❌ |
✅ | ✅ | ❌ |
| ConvNeXT | ✅ | ✅ | ❌ |
| ConvNeXTV2 |
❌ | ❌ |
✅ | ❌ | ❌ |
| ConvNeXTV2 | ✅ | ❌ | ❌ |
| CPM-Ant | ✅
| ❌ | ✅
| ❌ | ❌ |
| CPM-Ant | ✅ | ❌ | ❌ |
| CTRL | ✅
| ❌ | ✅
| ✅ | ❌ |
| CTRL | ✅ | ✅ | ❌ |
| CvT |
❌ | ❌ |
✅ | ✅ | ❌ |
| CvT | ✅ | ✅ | ❌ |
| Data2VecAudio |
❌ | ❌ |
✅ | ❌ | ❌ |
| Data2VecAudio | ✅ | ❌ | ❌ |
| Data2VecText |
❌ | ❌ |
✅ | ❌ | ❌ |
| Data2VecText | ✅ | ❌ | ❌ |
| Data2VecVision |
❌ | ❌ |
✅ | ✅ | ❌ |
| Data2VecVision | ✅ | ✅ | ❌ |
| DeBERTa | ✅
| ✅ | ✅
| ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅
| ✅ | ✅
| ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ❌ |
| Decision Transformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Decision Transformer | ✅ | ❌ | ❌ |
| Deformable DETR |
❌ | ❌ |
✅ | ❌ | ❌ |
| Deformable DETR | ✅ | ❌ | ❌ |
| DeiT |
❌ | ❌ |
✅ | ✅ | ❌ |
| DeiT | ✅ | ✅ | ❌ |
| DETA |
❌ | ❌ |
✅ | ❌ | ❌ |
| DETA | ✅ | ❌ | ❌ |
| DETR |
❌ | ❌ |
✅ | ❌ | ❌ |
| DETR | ✅ | ❌ | ❌ |
| DiNAT |
❌ | ❌ |
✅ | ❌ | ❌ |
| DiNAT | ✅ | ❌ | ❌ |
| DINOv2 |
❌ | ❌ |
✅ | ❌ | ❌ |
| DINOv2 | ✅ | ❌ | ❌ |
| DistilBERT | ✅
| ✅ | ✅
| ✅ | ✅ |
| DistilBERT | ✅ | ✅ | ✅ |
| DonutSwin |
❌ | ❌ |
✅ | ❌ | ❌ |
| DonutSwin | ✅ | ❌ | ❌ |
| DPR | ✅
| ✅ | ✅
| ✅ | ❌ |
| DPR | ✅ | ✅ | ❌ |
| DPT |
❌ | ❌ |
✅ | ❌ | ❌ |
| DPT | ✅ | ❌ | ❌ |
| EfficientFormer |
❌ | ❌ |
✅ | ✅ | ❌ |
| EfficientFormer | ✅ | ✅ | ❌ |
| EfficientNet |
❌ | ❌ |
✅ | ❌ | ❌ |
| EfficientNet | ✅ | ❌ | ❌ |
| ELECTRA | ✅
| ✅ | ✅
| ✅ | ✅ |
| ELECTRA | ✅ | ✅ | ✅ |
| EnCodec |
❌ | ❌ |
✅ | ❌ | ❌ |
| EnCodec | ✅ | ❌ | ❌ |
| Encoder decoder |
❌ | ❌ |
✅ | ✅ | ✅ |
| Encoder decoder | ✅ | ✅ | ✅ |
| ERNIE |
❌ | ❌ |
✅ | ❌ | ❌ |
| ERNIE | ✅ | ❌ | ❌ |
| ErnieM | ✅
| ❌ | ✅
| ❌ | ❌ |
| ErnieM | ✅ | ❌ | ❌ |
| ESM | ✅
| ❌ | ✅
| ✅ | ❌ |
| ESM | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅
| ❌ | ✅
| ❌ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ❌ |
| Falcon |
❌ | ❌ |
✅ | ❌ | ❌ |
| Falcon | ✅ | ❌ | ❌ |
| FlauBERT | ✅
| ❌ | ✅
| ✅ | ❌ |
| FlauBERT | ✅ | ✅ | ❌ |
| FLAVA |
❌ | ❌ |
✅ | ❌ | ❌ |
| FLAVA | ✅ | ❌ | ❌ |
| FNet | ✅
| ✅ | ✅
| ❌ | ❌ |
| FNet | ✅ | ❌ | ❌ |
| FocalNet |
❌ | ❌ |
✅ | ❌ | ❌ |
| FocalNet | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅
| ✅ | ✅
| ✅ | ❌ |
| Funnel Transformer | ✅ | ✅ | ❌ |
| GIT |
❌ | ❌ |
✅ | ❌ | ❌ |
| GIT | ✅ | ❌ | ❌ |
| GLPN |
❌ | ❌ |
✅ | ❌ | ❌ |
| GLPN | ✅ | ❌ | ❌ |
| GPT Neo |
❌ | ❌ |
✅ | ❌ | ✅ |
| GPT Neo | ✅ | ❌ | ✅ |
| GPT NeoX |
❌ | ✅ |
✅ | ❌ | ❌ |
| GPT NeoX | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅
| ❌ | ✅
| ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ❌ |
| GPT-J |
❌ | ❌ |
✅ | ✅ | ✅ |
| GPT-J | ✅ | ✅ | ✅ |
| GPT-Sw3 | ✅
| ✅ | ✅
| ✅ | ✅ |
| GPT-Sw3 | ✅ | ✅ | ✅ |
| GPTBigCode |
❌ | ❌ |
✅ | ❌ | ❌ |
| GPTBigCode | ✅ | ❌ | ❌ |
| GPTSAN-japanese | ✅
| ❌ | ✅
| ❌ | ❌ |
| GPTSAN-japanese | ✅ | ❌ | ❌ |
| Graphormer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Graphormer | ✅ | ❌ | ❌ |
| GroupViT |
❌ | ❌ |
✅ | ✅ | ❌ |
| GroupViT | ✅ | ✅ | ❌ |
| Hubert |
❌ | ❌ |
✅ | ✅ | ❌ |
| Hubert | ✅ | ✅ | ❌ |
| I-BERT |
❌ | ❌ |
✅ | ❌ | ❌ |
| I-BERT | ✅ | ❌ | ❌ |
| ImageGPT |
❌ | ❌ |
✅ | ❌ | ❌ |
| ImageGPT | ✅ | ❌ | ❌ |
| Informer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Informer | ✅ | ❌ | ❌ |
| InstructBLIP |
❌ | ❌ |
✅ | ❌ | ❌ |
| InstructBLIP | ✅ | ❌ | ❌ |
| Jukebox | ✅
| ❌ | ✅
| ❌ | ❌ |
| Jukebox | ✅ | ❌ | ❌ |
| LayoutLM | ✅
| ✅ | ✅
| ✅ | ❌ |
| LayoutLM | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅
| ✅ | ✅
| ❌ | ❌ |
| LayoutLMv2 | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅
| ✅ | ✅
| ✅ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ❌ |
| LED | ✅
| ✅ | ✅
| ✅ | ❌ |
| LED | ✅ | ✅ | ❌ |
| LeViT |
❌ | ❌ |
✅ | ❌ | ❌ |
| LeViT | ✅ | ❌ | ❌ |
| LiLT |
❌ | ❌ |
✅ | ❌ | ❌ |
| LiLT | ✅ | ❌ | ❌ |
| LLaMA | ✅
| ✅ | ✅
| ❌ | ❌ |
| LLaMA | ✅ | ❌ | ❌ |
| Longformer | ✅
| ✅ | ✅
| ✅ | ❌ |
| Longformer | ✅ | ✅ | ❌ |
| LongT5 |
❌ | ❌ |
✅ | ❌ | ✅ |
| LongT5 | ✅ | ❌ | ✅ |
| LUKE | ✅
| ❌ | ✅
| ❌ | ❌ |
| LUKE | ✅ | ❌ | ❌ |
| LXMERT | ✅
| ✅ | ✅
| ✅ | ❌ |
| LXMERT | ✅ | ✅ | ❌ |
| M-CTC-T |
❌ | ❌ |
✅ | ❌ | ❌ |
| M-CTC-T | ✅ | ❌ | ❌ |
| M2M100 | ✅
| ❌ | ✅
| ❌ | ❌ |
| M2M100 | ✅ | ❌ | ❌ |
| Marian | ✅
| ❌ | ✅
| ✅ | ✅ |
| Marian | ✅ | ✅ | ✅ |
| MarkupLM | ✅
| ✅ | ✅
| ❌ | ❌ |
| MarkupLM | ✅ | ❌ | ❌ |
| Mask2Former |
❌ | ❌ |
✅ | ❌ | ❌ |
| Mask2Former | ✅ | ❌ | ❌ |
| MaskFormer |
❌ | ❌ |
✅ | ❌ | ❌ |
| MaskFormer | ✅ | ❌ | ❌ |
| MaskFormerSwin | ❌
| ❌ | ❌
| ❌ | ❌ |
| MaskFormerSwin | ❌ | ❌ | ❌ |
| mBART | ✅
| ✅ | ✅
| ✅ | ✅ |
| mBART | ✅ | ✅ | ✅ |
| MEGA |
❌ | ❌ |
✅ | ❌ | ❌ |
| MEGA | ✅ | ❌ | ❌ |
| Megatron-BERT |
❌ | ❌ |
✅ | ❌ | ❌ |
| Megatron-BERT | ✅ | ❌ | ❌ |
| MGP-STR | ✅
| ❌ | ✅
| ❌ | ❌ |
| MGP-STR | ✅ | ❌ | ❌ |
| MobileBERT | ✅
| ✅ | ✅
| ✅ | ❌ |
| MobileBERT | ✅ | ✅ | ❌ |
| MobileNetV1 |
❌ | ❌ |
✅ | ❌ | ❌ |
| MobileNetV1 | ✅ | ❌ | ❌ |
| MobileNetV2 |
❌ | ❌ |
✅ | ❌ | ❌ |
| MobileNetV2 | ✅ | ❌ | ❌ |
| MobileViT |
❌ | ❌ |
✅ | ✅ | ❌ |
| MobileViT | ✅ | ✅ | ❌ |
| MobileViTV2 |
❌ | ❌ |
✅ | ❌ | ❌ |
| MobileViTV2 | ✅ | ❌ | ❌ |
| MPNet | ✅
| ✅ | ✅
| ✅ | ❌ |
| MPNet | ✅ | ✅ | ❌ |
| MRA |
❌ | ❌ |
✅ | ❌ | ❌ |
| MRA | ✅ | ❌ | ❌ |
| MT5 | ✅
| ✅ | ✅
| ✅ | ✅ |
| MT5 | ✅ | ✅ | ✅ |
| MusicGen |
❌ | ❌ |
✅ | ❌ | ❌ |
| MusicGen | ✅ | ❌ | ❌ |
| MVP | ✅
| ✅ | ✅
| ❌ | ❌ |
| MVP | ✅ | ❌ | ❌ |
| NAT |
❌ | ❌ |
✅ | ❌ | ❌ |
| NAT | ✅ | ❌ | ❌ |
| Nezha |
❌ | ❌ |
✅ | ❌ | ❌ |
| Nezha | ✅ | ❌ | ❌ |
| NLLB-MOE |
❌ | ❌ |
✅ | ❌ | ❌ |
| NLLB-MOE | ✅ | ❌ | ❌ |
| Nyströmformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Nyströmformer | ✅ | ❌ | ❌ |
| OneFormer |
❌ | ❌ |
✅ | ❌ | ❌ |
| OneFormer | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅
| ✅ | ✅
| ✅ | ❌ |
| OpenAI GPT | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅
| ✅ | ✅
| ✅ | ✅ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ |
| OpenLlama |
❌ | ❌ |
✅ | ❌ | ❌ |
| OpenLlama | ✅ | ❌ | ❌ |
| OPT |
❌ | ❌ |
✅ | ✅ | ✅ |
| OPT | ✅ | ✅ | ✅ |
| OWL-ViT |
❌ | ❌ |
✅ | ❌ | ❌ |
| OWL-ViT | ✅ | ❌ | ❌ |
| Pegasus | ✅
| ✅ | ✅
| ✅ | ✅ |
| Pegasus | ✅ | ✅ | ✅ |
| PEGASUS-X |
❌ | ❌ |
✅ | ❌ | ❌ |
| PEGASUS-X | ✅ | ❌ | ❌ |
| Perceiver | ✅
| ❌ | ✅
| ❌ | ❌ |
| Perceiver | ✅ | ❌ | ❌ |
| Pix2Struct |
❌ | ❌ |
✅ | ❌ | ❌ |
| Pix2Struct | ✅ | ❌ | ❌ |
| PLBart | ✅
| ❌ | ✅
| ❌ | ❌ |
| PLBart | ✅ | ❌ | ❌ |
| PoolFormer |
❌ | ❌ |
✅ | ❌ | ❌ |
| PoolFormer | ✅ | ❌ | ❌ |
| ProphetNet | ✅
| ❌ | ✅
| ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ❌ |
| QDQBert |
❌ | ❌ |
✅ | ❌ | ❌ |
| QDQBert | ✅ | ❌ | ❌ |
| RAG | ✅
| ❌ | ✅
| ✅ | ❌ |
| RAG | ✅ | ✅ | ❌ |
| REALM | ✅
| ✅ | ✅
| ❌ | ❌ |
| REALM | ✅ | ❌ | ❌ |
| Reformer | ✅
| ✅ | ✅
| ❌ | ❌ |
| Reformer | ✅ | ❌ | ❌ |
| RegNet |
❌ | ❌ |
✅ | ✅ | ✅ |
| RegNet | ✅ | ✅ | ✅ |
| RemBERT | ✅
| ✅ | ✅
| ✅ | ❌ |
| RemBERT | ✅ | ✅ | ❌ |
| ResNet |
❌ | ❌ |
✅ | ✅ | ✅ |
| ResNet | ✅ | ✅ | ✅ |
| RetriBERT | ✅
| ✅ | ✅
| ❌ | ❌ |
| RetriBERT | ✅ | ❌ | ❌ |
| RoBERTa | ✅
| ✅ | ✅
| ✅ | ✅ |
| RoBERTa | ✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm |
❌ | ❌ |
✅ | ✅ | ✅ |
| RoBERTa-PreLayerNorm | ✅ | ✅ | ✅ |
| RoCBert | ✅
| ❌ | ✅
| ❌ | ❌ |
| RoCBert | ✅ | ❌ | ❌ |
| RoFormer | ✅
| ✅ | ✅
| ✅ | ✅ |
| RoFormer | ✅ | ✅ | ✅ |
| RWKV |
❌ | ❌ |
✅ | ❌ | ❌ |
| RWKV | ✅ | ❌ | ❌ |
| SAM |
❌ | ❌ |
✅ | ✅ | ❌ |
| SAM | ✅ | ✅ | ❌ |
| SegFormer |
❌ | ❌ |
✅ | ✅ | ❌ |
| SegFormer | ✅ | ✅ | ❌ |
| SEW |
❌ | ❌ |
✅ | ❌ | ❌ |
| SEW | ✅ | ❌ | ❌ |
| SEW-D |
❌ | ❌ |
✅ | ❌ | ❌ |
| SEW-D | ✅ | ❌ | ❌ |
| Speech Encoder decoder |
❌ | ❌ |
✅ | ❌ | ✅ |
| Speech Encoder decoder | ✅ | ❌ | ✅ |
| Speech2Text | ✅
| ❌ | ✅
| ✅ | ❌ |
| Speech2Text | ✅ | ✅ | ❌ |
| Speech2Text2 |
✅ | ❌ |
❌ | ❌ | ❌ |
| Speech2Text2 | ❌ | ❌ | ❌ |
| SpeechT5 | ✅
| ❌ | ✅
| ❌ | ❌ |
| SpeechT5 | ✅ | ❌ | ❌ |
| Splinter | ✅
| ✅ | ✅
| ❌ | ❌ |
| Splinter | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅
| ✅ | ✅
| ❌ | ❌ |
| SqueezeBERT | ✅ | ❌ | ❌ |
| SwiftFormer |
❌ | ❌ |
✅ | ❌ | ❌ |
| SwiftFormer | ✅ | ❌ | ❌ |
| Swin Transformer |
❌ | ❌ |
✅ | ✅ | ❌ |
| Swin Transformer | ✅ | ✅ | ❌ |
| Swin Transformer V2 |
❌ | ❌ |
✅ | ❌ | ❌ |
| Swin Transformer V2 | ✅ | ❌ | ❌ |
| Swin2SR |
❌ | ❌ |
✅ | ❌ | ❌ |
| Swin2SR | ✅ | ❌ | ❌ |
| SwitchTransformers |
❌ | ❌ |
✅ | ❌ | ❌ |
| SwitchTransformers | ✅ | ❌ | ❌ |
| T5 | ✅
| ✅ | ✅
| ✅ | ✅ |
| T5 | ✅ | ✅ | ✅ |
| Table Transformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Table Transformer | ✅ | ❌ | ❌ |
| TAPAS | ✅
| ❌ | ✅
| ✅ | ❌ |
| TAPAS | ✅ | ✅ | ❌ |
| Time Series Transformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Time Series Transformer | ✅ | ❌ | ❌ |
| TimeSformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| TimeSformer | ✅ | ❌ | ❌ |
| TimmBackbone | ❌
| ❌ | ❌
| ❌ | ❌ |
| TimmBackbone | ❌ | ❌ | ❌ |
| Trajectory Transformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Trajectory Transformer | ✅ | ❌ | ❌ |
| Transformer-XL | ✅
| ❌ | ✅
| ✅ | ❌ |
| Transformer-XL | ✅ | ✅ | ❌ |
| TrOCR |
❌ | ❌ |
✅ | ❌ | ❌ |
| TrOCR | ✅ | ❌ | ❌ |
| TVLT |
❌ | ❌ |
✅ | ❌ | ❌ |
| TVLT | ✅ | ❌ | ❌ |
| UMT5 |
❌ | ❌ |
✅ | ❌ | ❌ |
| UMT5 | ✅ | ❌ | ❌ |
| UniSpeech |
❌ | ❌ |
✅ | ❌ | ❌ |
| UniSpeech | ✅ | ❌ | ❌ |
| UniSpeechSat |
❌ | ❌ |
✅ | ❌ | ❌ |
| UniSpeechSat | ✅ | ❌ | ❌ |
| UPerNet |
❌ | ❌ |
✅ | ❌ | ❌ |
| UPerNet | ✅ | ❌ | ❌ |
| VAN |
❌ | ❌ |
✅ | ❌ | ❌ |
| VAN | ✅ | ❌ | ❌ |
| VideoMAE |
❌ | ❌ |
✅ | ❌ | ❌ |
| VideoMAE | ✅ | ❌ | ❌ |
| ViLT |
❌ | ❌ |
✅ | ❌ | ❌ |
| ViLT | ✅ | ❌ | ❌ |
| Vision Encoder decoder |
❌ | ❌ |
✅ | ✅ | ✅ |
| Vision Encoder decoder | ✅ | ✅ | ✅ |
| VisionTextDualEncoder |
❌ | ❌ |
✅ | ✅ | ✅ |
| VisionTextDualEncoder | ✅ | ✅ | ✅ |
| VisualBERT |
❌ | ❌ |
✅ | ❌ | ❌ |
| VisualBERT | ✅ | ❌ | ❌ |
| ViT |
❌ | ❌ |
✅ | ✅ | ✅ |
| ViT | ✅ | ✅ | ✅ |
| ViT Hybrid |
❌ | ❌ |
✅ | ❌ | ❌ |
| ViT Hybrid | ✅ | ❌ | ❌ |
| ViTMAE |
❌ | ❌ |
✅ | ✅ | ❌ |
| ViTMAE | ✅ | ✅ | ❌ |
| ViTMSN |
❌ | ❌ |
✅ | ❌ | ❌ |
| ViTMSN | ✅ | ❌ | ❌ |
| ViViT |
❌ | ❌ |
✅ | ❌ | ❌ |
| ViViT | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅
| ❌ | ✅
| ✅ | ✅ |
| Wav2Vec2 | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer |
❌ | ❌ |
✅ | ❌ | ❌ |
| Wav2Vec2-Conformer | ✅ | ❌ | ❌ |
| WavLM |
❌ | ❌ |
✅ | ❌ | ❌ |
| WavLM | ✅ | ❌ | ❌ |
| Whisper | ✅
| ✅ | ✅
| ✅ | ✅ |
| Whisper | ✅ | ✅ | ✅ |
| X-CLIP |
❌ | ❌ |
✅ | ❌ | ❌ |
| X-CLIP | ✅ | ❌ | ❌ |
| X-MOD |
❌ | ❌ |
✅ | ❌ | ❌ |
| X-MOD | ✅ | ❌ | ❌ |
| XGLM | ✅
| ✅ | ✅
| ✅ | ✅ |
| XGLM | ✅ | ✅ | ✅ |
| XLM | ✅
| ❌ | ✅
| ✅ | ❌ |
| XLM | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅
| ❌ | ✅
| ❌ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅
| ✅ | ✅
| ✅ | ✅ |
| XLM-RoBERTa | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL |
❌ | ❌ |
✅ | ❌ | ❌ |
| XLM-RoBERTa-XL | ✅ | ❌ | ❌ |
| XLNet | ✅
| ✅ | ✅
| ✅ | ❌ |
| XLNet | ✅ | ✅ | ❌ |
| YOLOS |
❌ | ❌ |
✅ | ❌ | ❌ |
| YOLOS | ✅ | ❌ | ❌ |
| YOSO |
❌ | ❌ |
✅ | ❌ | ❌ |
| YOSO | ✅ | ❌ | ❌ |
<!-- End table-->
<!-- End table-->
utils/check_table.py
View file @
640e1b6c
...
@@ -93,8 +93,6 @@ def get_model_table_from_auto_modules():
...
@@ -93,8 +93,6 @@ def get_model_table_from_auto_modules():
model_name_to_prefix
=
{
name
:
config
.
replace
(
"Config"
,
""
)
for
name
,
config
in
model_name_to_config
.
items
()}
model_name_to_prefix
=
{
name
:
config
.
replace
(
"Config"
,
""
)
for
name
,
config
in
model_name_to_config
.
items
()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
slow_tokenizers
=
collections
.
defaultdict
(
bool
)
fast_tokenizers
=
collections
.
defaultdict
(
bool
)
pt_models
=
collections
.
defaultdict
(
bool
)
pt_models
=
collections
.
defaultdict
(
bool
)
tf_models
=
collections
.
defaultdict
(
bool
)
tf_models
=
collections
.
defaultdict
(
bool
)
flax_models
=
collections
.
defaultdict
(
bool
)
flax_models
=
collections
.
defaultdict
(
bool
)
...
@@ -102,13 +100,7 @@ def get_model_table_from_auto_modules():
...
@@ -102,13 +100,7 @@ def get_model_table_from_auto_modules():
# Let's lookup through all transformers object (once).
# Let's lookup through all transformers object (once).
for
attr_name
in
dir
(
transformers_module
):
for
attr_name
in
dir
(
transformers_module
):
lookup_dict
=
None
lookup_dict
=
None
if
attr_name
.
endswith
(
"Tokenizer"
):
if
_re_tf_models
.
match
(
attr_name
)
is
not
None
:
lookup_dict
=
slow_tokenizers
attr_name
=
attr_name
[:
-
9
]
elif
attr_name
.
endswith
(
"TokenizerFast"
):
lookup_dict
=
fast_tokenizers
attr_name
=
attr_name
[:
-
13
]
elif
_re_tf_models
.
match
(
attr_name
)
is
not
None
:
lookup_dict
=
tf_models
lookup_dict
=
tf_models
attr_name
=
_re_tf_models
.
match
(
attr_name
).
groups
()[
0
]
attr_name
=
_re_tf_models
.
match
(
attr_name
).
groups
()[
0
]
elif
_re_flax_models
.
match
(
attr_name
)
is
not
None
:
elif
_re_flax_models
.
match
(
attr_name
)
is
not
None
:
...
@@ -129,7 +121,7 @@ def get_model_table_from_auto_modules():
...
@@ -129,7 +121,7 @@ def get_model_table_from_auto_modules():
# Let's build that table!
# Let's build that table!
model_names
=
list
(
model_name_to_config
.
keys
())
model_names
=
list
(
model_name_to_config
.
keys
())
model_names
.
sort
(
key
=
str
.
lower
)
model_names
.
sort
(
key
=
str
.
lower
)
columns
=
[
"Model"
,
"Tokenizer slow"
,
"Tokenizer fast"
,
"PyTorch support"
,
"TensorFlow support"
,
"Flax Support"
]
columns
=
[
"Model"
,
"PyTorch support"
,
"TensorFlow support"
,
"Flax Support"
]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
widths
=
[
len
(
c
)
+
2
for
c
in
columns
]
widths
=
[
len
(
c
)
+
2
for
c
in
columns
]
widths
[
0
]
=
max
([
len
(
name
)
for
name
in
model_names
])
+
2
widths
[
0
]
=
max
([
len
(
name
)
for
name
in
model_names
])
+
2
...
@@ -144,8 +136,6 @@ def get_model_table_from_auto_modules():
...
@@ -144,8 +136,6 @@ def get_model_table_from_auto_modules():
prefix
=
model_name_to_prefix
[
name
]
prefix
=
model_name_to_prefix
[
name
]
line
=
[
line
=
[
name
,
name
,
check
[
slow_tokenizers
[
prefix
]],
check
[
fast_tokenizers
[
prefix
]],
check
[
pt_models
[
prefix
]],
check
[
pt_models
[
prefix
]],
check
[
tf_models
[
prefix
]],
check
[
tf_models
[
prefix
]],
check
[
flax_models
[
prefix
]],
check
[
flax_models
[
prefix
]],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment