Unverified Commit 640318be authored by Stas Bekman's avatar Stas Bekman Committed by GitHub
Browse files

[deepspeed] Move code and doc into standalone files (#11984)

* move code and docs

* style

* moved

* restore
parent d6d747cb
This diff is collapsed.
This diff is collapsed.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with Deepspeed
"""
import importlib.util
import io
import json
import weakref
from copy import deepcopy
from .dependency_versions_check import dep_version_check
from .utils import logging
logger = logging.get_logger(__name__)
def is_deepspeed_available():
return importlib.util.find_spec("deepspeed") is not None
def _is_true(config, key):
if config is None:
return False
return bool(config.get(key))
def _set_if_auto(config, key, val):
if config is None:
return
if config.get(key) == "auto":
config[key] = val
class HfDeepSpeedConfig:
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A ``weakref`` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. ``from_pretrained`` and ``_get_resized_embeddings``).
Therefore it's important that this object remains alive while the program is still running.
:class:`~transformers.Trainer` uses the ``HfTrainerDeepSpeedConfig`` subclass instead. That subclass has logic to
sync the configuration with values of :class:`~transformers.TrainingArguments` by replacing special placeholder
values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (:obj:`Union[str, Dict]`) - path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
# set global weakref object
set_hf_deepspeed_config(self)
dep_version_check("deepspeed")
if isinstance(config_file_or_dict, dict):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overriden
config = deepcopy(config_file_or_dict)
elif isinstance(config_file_or_dict, str):
with io.open(config_file_or_dict, "r", encoding="utf-8") as f:
config = json.load(f)
else:
raise ValueError("expecting either a path to a DeepSpeed config file or a pre-populated dict")
self.config = config
# zero stage - this is done as early as possible, before model is created, to allow
# ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
# during ``zero.Init()`` which needs whether fp16 is enabled, dtype, etc.
config_zero = config.get("zero_optimization", {})
self.stage = config_zero.get("stage", 0)
# offload
self.offload = False
config_zero = config.get("zero_optimization", {})
if self.is_zero2():
self.offload = _is_true(config_zero, "cpu_offload")
elif self.is_zero3():
offload_devices = ["cpu", "nvme"]
if config_zero.get("offload_optimizer", {}).get("device") in offload_devices:
self.offload = True
if config_zero.get("offload_param", {}).get("device") in offload_devices:
self.offload = True
def is_zero2(self):
return self.stage == 2
def is_zero3(self):
return self.stage == 3
def is_offload(self):
return self.offload
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
"""
The ``HfTrainerDeepSpeedConfig`` object is meant to be created during ``TrainingArguments`` object creation and has
the same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
def trainer_config_process(self, args):
"""
Adjust the config with ``TrainingArguments`` values. This stage is run during ``TrainingArguments`` object
creation.
"""
config = self.config
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
_set_if_auto(config, "train_micro_batch_size_per_gpu", args.per_device_train_batch_size)
_set_if_auto(config, "gradient_accumulation_steps", args.gradient_accumulation_steps)
_set_if_auto(config, "train_batch_size", train_batch_size)
_set_if_auto(config, "gradient_clipping", args.max_grad_norm)
config_optim = config.get("optimizer", {})
if config_optim != {}:
config_optim_params = config_optim.get("params")
_set_if_auto(config_optim_params, "lr", args.learning_rate)
_set_if_auto(config_optim_params, "betas", [args.adam_beta1, args.adam_beta2])
_set_if_auto(config_optim_params, "eps", args.adam_epsilon)
_set_if_auto(config_optim_params, "weight_decay", args.weight_decay)
config_sched = config.get("scheduler", {})
if config_sched != {}:
config_sched_params = config_sched.get("params")
_set_if_auto(config_sched_params, "warmup_min_lr", 0)
_set_if_auto(config_sched_params, "warmup_max_lr", args.learning_rate)
_set_if_auto(config_sched_params, "warmup_num_steps", args.warmup_steps)
# total_num_steps - will get set in trainer_config_finalize
# fp16
if args.fp16:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
config_fp16 = config.get("fp16")
_set_if_auto(config_fp16, "enabled", fp16_backend == "amp")
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
config_amp = config.get("amp")
_set_if_auto(config_amp, "enabled", fp16_backend == "apex")
_set_if_auto(config_amp, "opt_level", args.fp16_opt_level)
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we we can complete the configuration process.
"""
config = self.config
# zero
config_zero = config.get("zero_optimization", {})
if self.is_zero3():
# automatically assign the optimal config values based on model config
hidden_size = model.config.hidden_size
_set_if_auto(config_zero, "reduce_bucket_size", hidden_size * hidden_size)
_set_if_auto(config_zero, "stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
_set_if_auto(config_zero, "stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
config_sched = config.get("scheduler", {})
config_sched_params = config_sched.get("params", {})
_set_if_auto(config_sched_params, "total_num_steps", num_training_steps)
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
global _hf_deepspeed_config_weak_ref
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
def is_deepspeed_zero3_enabled():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().is_zero3()
else:
return False
def deepspeed_config():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().config
else:
return None
def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
"""
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
If ``resume_from_checkpoint`` was passed then an attempt to resume from a previously saved checkpoint will be made.
Args:
trainer: Trainer object
num_training_steps: per single gpu
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
Returns: model, optimizer, lr_scheduler
"""
import deepspeed
model = trainer.model
hf_deepspeed_config = trainer.args.hf_deepspeed_config
hf_deepspeed_config.trainer_config_finalize(trainer.args, model, num_training_steps)
# resume config update - some bits like `model` and `num_training_steps` only become available during train
config = hf_deepspeed_config.config
# Optimizer + Scheduler
# Currently supported combos:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Yes
# 3. DS scheduler + HF optimizer: Yes
# 4. HF scheduler + DS optimizer: No
#
# Unless Offload is enabled in which case it's:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: No
# 3. DS scheduler + HF optimizer: No
# 4. HF scheduler + DS optimizer: No
optimizer = None
if "optimizer" not in config:
if hf_deepspeed_config.is_offload():
raise ValueError("ZeRO Offload can only work with DeepSpeed optimizers")
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
trainer.create_optimizer()
optimizer = trainer.optimizer
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
# DS schedulers (deepspeed/runtime/lr_schedules.py):
#
# DS name | --lr_scheduler_type | HF func | Notes
# -------------| ---------------------|-----------------------------------|--------------------
# LRRangeTest | na | na | LRRT
# OneCycle | na | na | 1CLR
# WarmupLR | constant_with_warmup | get_constant_schedule_with_warmup | w/ warmup_min_lr=0
# WarmupDecayLR| linear | get_linear_schedule_with_warmup |
lr_scheduler = None
if "scheduler" not in config:
if "optimizer" in config:
# to make this option work, we need to init DS optimizer first, then init HS scheduler,
# then pass the HS scheduler to DS init, which is not possible at the moment
raise ValueError("At the moment HF scheduler + DeepSpeed optimizer combination is not possible")
else:
trainer.create_scheduler(num_training_steps=num_training_steps)
lr_scheduler = trainer.lr_scheduler
# keep for quick debug:
# from pprint import pprint; pprint(config)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
model_parameters=model_parameters,
config_params=config,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
if resume_from_checkpoint is not None:
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
# path contains what looks like a deepspeed checkpoint
import glob
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{resume_from_checkpoint}/global_step*"))
if len(deepspeed_checkpoint_dirs) > 0:
logger.info(f"Attempting to resume from {resume_from_checkpoint}")
# this magically updates self.optimizer and self.lr_scheduler
load_path, _ = model.load_checkpoint(
resume_from_checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True
)
if load_path is None:
raise ValueError(f"[deepspeed] failed to resume from checkpoint {resume_from_checkpoint}")
else:
logger.info(f"{resume_from_checkpoint} doesn't have deepspeed checkpoints, doing nothing")
return model, optimizer, lr_scheduler
......@@ -15,16 +15,11 @@
Integrations with other Python libraries.
"""
import importlib.util
import io
import json
import numbers
import os
import tempfile
import weakref
from copy import deepcopy
from pathlib import Path
from .dependency_versions_check import dep_version_check
from .utils import logging
......@@ -101,10 +96,6 @@ def is_fairscale_available():
return importlib.util.find_spec("fairscale") is not None
def is_deepspeed_available():
return importlib.util.find_spec("deepspeed") is not None
def is_neptune_available():
return importlib.util.find_spec("neptune") is not None
......@@ -273,292 +264,6 @@ def rewrite_logs(d):
return new_d
def _is_true(config, key):
if config is None:
return False
return bool(config.get(key))
def _set_if_auto(config, key, val):
if config is None:
return
if config.get(key) == "auto":
config[key] = val
class HfDeepSpeedConfig:
"""
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
A ``weakref`` of this object is stored in the module's globals to be able to access the config from areas where
things like the Trainer object is not available (e.g. ``from_pretrained`` and ``_get_resized_embeddings``).
Therefore it's important that this object remains alive while the program is still running.
:class:`~transformers.Trainer` uses the ``HfTrainerDeepSpeedConfig`` subclass instead. That subclass has logic to
sync the configuration with values of :class:`~transformers.TrainingArguments` by replacing special placeholder
values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way.
Args:
config_file_or_dict (:obj:`Union[str, Dict]`) - path to DeepSpeed config file or dict.
"""
def __init__(self, config_file_or_dict):
# set global weakref object
set_hf_deepspeed_config(self)
dep_version_check("deepspeed")
if isinstance(config_file_or_dict, dict):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overriden
config = deepcopy(config_file_or_dict)
elif isinstance(config_file_or_dict, str):
with io.open(config_file_or_dict, "r", encoding="utf-8") as f:
config = json.load(f)
else:
raise ValueError("expecting either a path to a DeepSpeed config file or a pre-populated dict")
self.config = config
# zero stage - this is done as early as possible, before model is created, to allow
# ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object
# during ``zero.Init()`` which needs whether fp16 is enabled, dtype, etc.
config_zero = config.get("zero_optimization", {})
self.stage = config_zero.get("stage", 0)
# offload
self.offload = False
config_zero = config.get("zero_optimization", {})
if self.is_zero2():
self.offload = _is_true(config_zero, "cpu_offload")
elif self.is_zero3():
offload_devices = ["cpu", "nvme"]
if config_zero.get("offload_optimizer", {}).get("device") in offload_devices:
self.offload = True
if config_zero.get("offload_param", {}).get("device") in offload_devices:
self.offload = True
def is_zero2(self):
return self.stage == 2
def is_zero3(self):
return self.stage == 3
def is_offload(self):
return self.offload
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
"""
The ``HfTrainerDeepSpeedConfig`` object is meant to be created during ``TrainingArguments`` object creation and has
the same lifespan as the latter.
"""
def __init__(self, config_file_or_dict):
super().__init__(config_file_or_dict)
def trainer_config_process(self, args):
"""
Adjust the config with ``TrainingArguments`` values. This stage is run during ``TrainingArguments`` object
creation.
"""
config = self.config
# DeepSpeed does:
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
_set_if_auto(config, "train_micro_batch_size_per_gpu", args.per_device_train_batch_size)
_set_if_auto(config, "gradient_accumulation_steps", args.gradient_accumulation_steps)
_set_if_auto(config, "train_batch_size", train_batch_size)
_set_if_auto(config, "gradient_clipping", args.max_grad_norm)
config_optim = config.get("optimizer", {})
if config_optim != {}:
config_optim_params = config_optim.get("params")
_set_if_auto(config_optim_params, "lr", args.learning_rate)
_set_if_auto(config_optim_params, "betas", [args.adam_beta1, args.adam_beta2])
_set_if_auto(config_optim_params, "eps", args.adam_epsilon)
_set_if_auto(config_optim_params, "weight_decay", args.weight_decay)
config_sched = config.get("scheduler", {})
if config_sched != {}:
config_sched_params = config_sched.get("params")
_set_if_auto(config_sched_params, "warmup_min_lr", 0)
_set_if_auto(config_sched_params, "warmup_max_lr", args.learning_rate)
_set_if_auto(config_sched_params, "warmup_num_steps", args.warmup_steps)
# total_num_steps - will get set in trainer_config_finalize
# fp16
if args.fp16:
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
else:
fp16_backend = None
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
# any here unless the user did the work
config_fp16 = config.get("fp16")
_set_if_auto(config_fp16, "enabled", fp16_backend == "amp")
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
# ZeRO features
config_amp = config.get("amp")
_set_if_auto(config_amp, "enabled", fp16_backend == "apex")
_set_if_auto(config_amp, "opt_level", args.fp16_opt_level)
def trainer_config_finalize(self, args, model, num_training_steps):
"""
This stage is run after we have the model and know num_training_steps.
Now we we can complete the configuration process.
"""
config = self.config
# zero
config_zero = config.get("zero_optimization", {})
if self.is_zero3():
# automatically assign the optimal config values based on model config
hidden_size = model.config.hidden_size
_set_if_auto(config_zero, "reduce_bucket_size", hidden_size * hidden_size)
_set_if_auto(config_zero, "stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size)
_set_if_auto(config_zero, "stage3_param_persistence_threshold", 10 * hidden_size)
# scheduler
config_sched = config.get("scheduler", {})
config_sched_params = config_sched.get("params", {})
_set_if_auto(config_sched_params, "total_num_steps", num_training_steps)
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
_hf_deepspeed_config_weak_ref = None
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
global _hf_deepspeed_config_weak_ref
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
def is_deepspeed_zero3_enabled():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().is_zero3()
else:
return False
def deepspeed_config():
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
return _hf_deepspeed_config_weak_ref().config
else:
return None
def deepspeed_init(trainer, num_training_steps, resume_from_checkpoint=None):
"""
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
If ``resume_from_checkpoint`` was passed then an attempt to resume from a previously saved checkpoint will be made.
Args:
trainer: Trainer object
num_training_steps: per single gpu
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
Returns: model, optimizer, lr_scheduler
"""
import deepspeed
model = trainer.model
hf_deepspeed_config = trainer.args.hf_deepspeed_config
hf_deepspeed_config.trainer_config_finalize(trainer.args, model, num_training_steps)
# resume config update - some bits like `model` and `num_training_steps` only become available during train
config = hf_deepspeed_config.config
# Optimizer + Scheduler
# Currently supported combos:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: Yes
# 3. DS scheduler + HF optimizer: Yes
# 4. HF scheduler + DS optimizer: No
#
# Unless Offload is enabled in which case it's:
# 1. DS scheduler + DS optimizer: Yes
# 2. HF scheduler + HF optimizer: No
# 3. DS scheduler + HF optimizer: No
# 4. HF scheduler + DS optimizer: No
optimizer = None
if "optimizer" not in config:
if hf_deepspeed_config.is_offload():
raise ValueError("ZeRO Offload can only work with DeepSpeed optimizers")
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
# But trainer uses AdamW by default.
trainer.create_optimizer()
optimizer = trainer.optimizer
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
config["zero_allow_untested_optimizer"] = True
# DS schedulers (deepspeed/runtime/lr_schedules.py):
#
# DS name | --lr_scheduler_type | HF func | Notes
# -------------| ---------------------|-----------------------------------|--------------------
# LRRangeTest | na | na | LRRT
# OneCycle | na | na | 1CLR
# WarmupLR | constant_with_warmup | get_constant_schedule_with_warmup | w/ warmup_min_lr=0
# WarmupDecayLR| linear | get_linear_schedule_with_warmup |
lr_scheduler = None
if "scheduler" not in config:
if "optimizer" in config:
# to make this option work, we need to init DS optimizer first, then init HS scheduler,
# then pass the HS scheduler to DS init, which is not possible at the moment
raise ValueError("At the moment HF scheduler + DeepSpeed optimizer combination is not possible")
else:
trainer.create_scheduler(num_training_steps=num_training_steps)
lr_scheduler = trainer.lr_scheduler
# keep for quick debug:
# from pprint import pprint; pprint(config)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
model_parameters=model_parameters,
config_params=config,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
if resume_from_checkpoint is not None:
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
# path contains what looks like a deepspeed checkpoint
import glob
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{resume_from_checkpoint}/global_step*"))
if len(deepspeed_checkpoint_dirs) > 0:
logger.info(f"Attempting to resume from {resume_from_checkpoint}")
# this magically updates self.optimizer and self.lr_scheduler
load_path, _ = model.load_checkpoint(
resume_from_checkpoint, load_optimizer_states=True, load_lr_scheduler_states=True
)
if load_path is None:
raise ValueError(f"[deepspeed] failed to resume from checkpoint {resume_from_checkpoint}")
else:
logger.info(f"{resume_from_checkpoint} doesn't have deepspeed checkpoints, doing nothing")
return model, optimizer, lr_scheduler
class TensorBoardCallback(TrainerCallback):
"""
A :class:`~transformers.TrainerCallback` that sends the logs to `TensorBoard
......
......@@ -29,6 +29,7 @@ from torch.nn import functional as F
from .activations import get_activation
from .configuration_utils import PretrainedConfig
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
from .file_utils import (
CONFIG_NAME,
DUMMY_INPUTS,
......@@ -45,7 +46,6 @@ from .file_utils import (
replace_return_docstrings,
)
from .generation_utils import GenerationMixin
from .integrations import deepspeed_config, is_deepspeed_zero3_enabled
from .utils import logging
......
......@@ -17,8 +17,8 @@
import types
from ...configuration_utils import PretrainedConfig
from ...deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
from ...file_utils import copy_func
from ...integrations import deepspeed_config, is_deepspeed_zero3_enabled
from ...utils import logging
from .configuration_auto import AutoConfig, replace_list_option_in_docstrings
......
......@@ -44,8 +44,6 @@ from .integrations import ( # isort: split
is_ray_tune_available,
run_hp_search_optuna,
run_hp_search_ray,
deepspeed_init,
is_deepspeed_zero3_enabled,
)
import numpy as np
......@@ -61,6 +59,7 @@ from . import __version__
from .configuration_utils import PretrainedConfig
from .data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from .debug_utils import DebugOption, DebugUnderflowOverflow
from .deepspeed import deepspeed_init, is_deepspeed_zero3_enabled
from .dependency_versions_check import dep_version_check
from .file_utils import (
CONFIG_NAME,
......@@ -863,7 +862,7 @@ class Trainer:
logger.info("Trial:", trial.params)
if self.args.deepspeed:
# Rebuild the deepspeed config to reflect the updated training parameters
from transformers.integrations import HfDeepSpeedConfig
from transformers.deepspeed import HfDeepSpeedConfig
self.args.hf_deepspeed_config = HfDeepSpeedConfig(self.args)
......
......@@ -19,7 +19,7 @@ from packaging import version
from torch import nn
from torch.utils.data.dataset import Dataset
from .integrations import is_deepspeed_zero3_enabled
from .deepspeed import is_deepspeed_zero3_enabled
from .trainer import Trainer
from .trainer_utils import PredictionOutput
from .utils import logging
......
......@@ -671,7 +671,7 @@ class TrainingArguments:
if self.deepspeed:
# - must be run very last in arg parsing, since it will use a lot of these settings.
# - must be run before the model is created.
from transformers.integrations import HfTrainerDeepSpeedConfig
from transformers.deepspeed import HfTrainerDeepSpeedConfig
# will be used later by the Trainer
# note: leave self.deepspeed unmodified in case a user relies on it not to be modified)
......@@ -739,7 +739,7 @@ class TrainingArguments:
# deepspeed ./program.py
# rather than:
# python -m torch.distributed.launch --nproc_per_node=2 ./program.py
from .integrations import is_deepspeed_available
from .deepspeed import is_deepspeed_available
if not is_deepspeed_available():
raise ImportError("--deepspeed requires deepspeed: `pip install deepspeed`.")
......
......@@ -21,8 +21,8 @@ from copy import deepcopy
from parameterized import parameterized
from transformers import AutoModel, TrainingArguments, is_torch_available, logging
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_available
from transformers.file_utils import WEIGHTS_NAME
from transformers.integrations import HfDeepSpeedConfig, is_deepspeed_available
from transformers.testing_utils import (
CaptureLogger,
CaptureStderr,
......@@ -71,7 +71,7 @@ def require_deepspeed(test_case):
if is_deepspeed_available():
from deepspeed.utils import logger as deepspeed_logger # noqa
from transformers.integrations import deepspeed_config, is_deepspeed_zero3_enabled # noqa
from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled # noqa
ZERO2 = "zero2"
ZERO3 = "zero3"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment