Unverified Commit 63d13d76 authored by Nicolas Patry's avatar Nicolas Patry Committed by GitHub
Browse files

Improving `image-segmentation` pipeline tests. (#19710)

This PR (https://github.com/huggingface/transformers/pull/19367) introduced a few breaking changes:

- Removed an argument `mask_threshold`.
- Broke the default behavior (instance vs panoptic in the function call)
  https://github.com/huggingface/transformers/pull/19367/files#diff-60f846b86fb6a21d4caf60f5b3d593a04accb8f248de3029cccae2ff898c5bc3R119-R120
- Broke the actual masks: https://github.com/huggingface/transformers/pull/1961

This PR is the start of a handful that will aim at bringing back the old
behavior(s).

- tests should not have to specify `task` by default, unless we want to
  modify the behavior and have a lower form of segmentation running)
- `test_small_model_pt` should be working.

This specific PR starts with adding more information to the masks hash
because missing the actual mask was actual easy to miss (the hashes do
change, but it was easy to miss that one code path wasn't properly
updated).

So we go from a simple `hash` to
```
{"hash": #smaller hash, "shape": (h, w), "white_pixels": n}
```

The `shape` should help make sure the interpolation of the mask works
correctly, the `white_pixels` hopefully helps detect big regressions in
their amount when the hash gets modified.
parent ee2a80ec
......@@ -1547,6 +1547,8 @@ def nested_simplify(obj, decimals=3):
if isinstance(obj, list):
return [nested_simplify(item, decimals) for item in obj]
if isinstance(obj, tuple):
return tuple([nested_simplify(item, decimals) for item in obj])
elif isinstance(obj, np.ndarray):
return nested_simplify(obj.tolist())
elif isinstance(obj, Mapping):
......
......@@ -14,8 +14,10 @@
import hashlib
import unittest
from typing import Dict
import datasets
import numpy as np
from datasets import load_dataset
from transformers import (
......@@ -48,7 +50,14 @@ else:
def hashimage(image: Image) -> str:
m = hashlib.md5(image.tobytes())
return m.hexdigest()
return m.hexdigest()[:10]
def mask_to_test_readable(mask: Image) -> Dict:
npimg = np.array(mask)
white_pixels = (npimg == 255).sum()
shape = npimg.shape
return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
@require_vision
......@@ -155,7 +164,7 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
# Shortening by hashing
for o in outputs:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
......@@ -163,12 +172,12 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
{
"score": 0.004,
"label": "LABEL_215",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
"mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
},
{
"score": 0.004,
"label": "LABEL_215",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
"mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
},
],
)
......@@ -182,7 +191,7 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
)
for output in outputs:
for o in output:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
......@@ -191,24 +200,24 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
{
"score": 0.004,
"label": "LABEL_215",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
"mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
},
{
"score": 0.004,
"label": "LABEL_215",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
"mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
},
],
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
"mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
},
{
"score": 0.004,
"label": "LABEL_215",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
"mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
},
],
],
......@@ -221,16 +230,20 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
for o in outputs:
# shortening by hashing
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": None, "label": "LABEL_0", "mask": "42d09072282a32da2ac77375a4c1280f"},
{
"score": None,
"label": "LABEL_0",
"mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
},
{
"score": None,
"label": "LABEL_1",
"mask": "46b8cc3976732873b219f77a1213c1a5",
"mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
},
],
)
......@@ -250,17 +263,41 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
# Shortening by hashing
for o in outputs:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9094, "label": "blanket", "mask": "dcff19a97abd8bd555e21186ae7c066a"},
{"score": 0.9941, "label": "cat", "mask": "9c0af87bd00f9d3a4e0c8888e34e70e2"},
{"score": 0.9987, "label": "remote", "mask": "c7870600d6c02a1f6d96470fc7220e8e"},
{"score": 0.9995, "label": "remote", "mask": "ef899a25fd44ec056c653f0ca2954fdd"},
{"score": 0.9722, "label": "couch", "mask": "37b8446ac578a17108aa2b7fccc33114"},
{"score": 0.9994, "label": "cat", "mask": "6a09d3655efd8a388ab4511e4cbbb797"},
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
)
......@@ -277,26 +314,74 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
# Shortening by hashing
for output in outputs:
for o in output:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9094, "label": "blanket", "mask": "dcff19a97abd8bd555e21186ae7c066a"},
{"score": 0.9941, "label": "cat", "mask": "9c0af87bd00f9d3a4e0c8888e34e70e2"},
{"score": 0.9987, "label": "remote", "mask": "c7870600d6c02a1f6d96470fc7220e8e"},
{"score": 0.9995, "label": "remote", "mask": "ef899a25fd44ec056c653f0ca2954fdd"},
{"score": 0.9722, "label": "couch", "mask": "37b8446ac578a17108aa2b7fccc33114"},
{"score": 0.9994, "label": "cat", "mask": "6a09d3655efd8a388ab4511e4cbbb797"},
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
[
{"score": 0.9094, "label": "blanket", "mask": "dcff19a97abd8bd555e21186ae7c066a"},
{"score": 0.9941, "label": "cat", "mask": "9c0af87bd00f9d3a4e0c8888e34e70e2"},
{"score": 0.9987, "label": "remote", "mask": "c7870600d6c02a1f6d96470fc7220e8e"},
{"score": 0.9995, "label": "remote", "mask": "ef899a25fd44ec056c653f0ca2954fdd"},
{"score": 0.9722, "label": "couch", "mask": "37b8446ac578a17108aa2b7fccc33114"},
{"score": 0.9994, "label": "cat", "mask": "6a09d3655efd8a388ab4511e4cbbb797"},
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
],
)
......@@ -312,13 +397,21 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
)
# Shortening by hashing
for o in outputs:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9995, "label": "remote", "mask": "d02404f5789f075e3b3174adbc3fd5b8"},
{"score": 0.9994, "label": "cat", "mask": "eaa115b40c96d3a6f4fe498963a7e470"},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
},
],
)
......@@ -327,16 +420,36 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
)
for o in outputs:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9941, "label": "cat", "mask": "9c0af87bd00f9d3a4e0c8888e34e70e2"},
{"score": 0.9987, "label": "remote", "mask": "c7870600d6c02a1f6d96470fc7220e8e"},
{"score": 0.9995, "label": "remote", "mask": "ef899a25fd44ec056c653f0ca2954fdd"},
{"score": 0.9722, "label": "couch", "mask": "37b8446ac578a17108aa2b7fccc33114"},
{"score": 0.9994, "label": "cat", "mask": "6a09d3655efd8a388ab4511e4cbbb797"},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
)
......@@ -357,17 +470,45 @@ class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
# Shortening by hashing
for o in outputs:
o["mask"] = hashimage(o["mask"])
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9974, "label": "wall", "mask": "a547b7c062917f4f3e36501827ad3cd6"},
{"score": 0.949, "label": "house", "mask": "0da9b7b38feac47bd2528a63e5ea7b19"},
{"score": 0.9995, "label": "grass", "mask": "1d07ea0a263dcf38ca8ae1a15fdceda1"},
{"score": 0.9976, "label": "tree", "mask": "6cdc97c7daf1dc596fa181f461ddd2ba"},
{"score": 0.8239, "label": "plant", "mask": "1ab4ce378f6ceff57d428055cfbd742f"},
{"score": 0.9942, "label": "road, route", "mask": "39c5d17be53b2d1b0f46aad8ebb15813"},
{"score": 1.0, "label": "sky", "mask": "a3756324a692981510c39b1a59510a36"},
{
"score": 0.9974,
"label": "wall",
"mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
},
{
"score": 0.949,
"label": "house",
"mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
},
{
"score": 0.9995,
"label": "grass",
"mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
},
{
"score": 0.9976,
"label": "tree",
"mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
},
{
"score": 0.8239,
"label": "plant",
"mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
},
{
"score": 0.9942,
"label": "road, route",
"mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
},
{
"score": 1.0,
"label": "sky",
"mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
},
],
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment