Unverified Commit 638d4998 authored by V.Prasanna kumar's avatar V.Prasanna kumar Committed by GitHub
Browse files

fixed broken link (#27560)

parent 5330b83b
...@@ -110,7 +110,7 @@ The next step is to load a DistilGPT2 tokenizer to process the `text` subfield: ...@@ -110,7 +110,7 @@ The next step is to load a DistilGPT2 tokenizer to process the `text` subfield:
``` ```
You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to
extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method: extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process#flatten) method:
```py ```py
>>> eli5 = eli5.flatten() >>> eli5 = eli5.flatten()
......
...@@ -105,7 +105,7 @@ For masked language modeling, the next step is to load a DistilRoBERTa tokenizer ...@@ -105,7 +105,7 @@ For masked language modeling, the next step is to load a DistilRoBERTa tokenizer
``` ```
You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to e You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to e
xtract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method: xtract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process#flatten) method:
```py ```py
>>> eli5 = eli5.flatten() >>> eli5 = eli5.flatten()
......
...@@ -94,7 +94,7 @@ Para modelados de lenguaje por enmascaramiento carga el tokenizador DistilRoBERT ...@@ -94,7 +94,7 @@ Para modelados de lenguaje por enmascaramiento carga el tokenizador DistilRoBERT
>>> tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") >>> tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
``` ```
Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten): Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process#flatten):
```py ```py
>>> eli5 = eli5.flatten() >>> eli5 = eli5.flatten()
......
...@@ -107,7 +107,7 @@ pip install transformers datasets evaluate ...@@ -107,7 +107,7 @@ pip install transformers datasets evaluate
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
``` ```
위의 예제에서 알 수 있듯이, `text` 필드는 `answers` 아래에 중첩되어 있습니다. 따라서 [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) 메소드를 사용하여 중첩 구조에서 `text` 하위 필드를 추출해야 합니다. 위의 예제에서 알 수 있듯이, `text` 필드는 `answers` 아래에 중첩되어 있습니다. 따라서 [`flatten`](https://huggingface.co/docs/datasets/process#flatten) 메소드를 사용하여 중첩 구조에서 `text` 하위 필드를 추출해야 합니다.
```py ```py
>>> eli5 = eli5.flatten() >>> eli5 = eli5.flatten()
......
...@@ -107,7 +107,7 @@ Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티와 ...@@ -107,7 +107,7 @@ Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티와
``` ```
위의 예제에서와 마찬가지로, `text` 필드는 `answers` 안에 중첩되어 있습니다. 위의 예제에서와 마찬가지로, `text` 필드는 `answers` 안에 중첩되어 있습니다.
따라서 중첩된 구조에서 [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) 메소드를 사용하여 `text` 하위 필드를 추출합니다: 따라서 중첩된 구조에서 [`flatten`](https://huggingface.co/docs/datasets/process#flatten) 메소드를 사용하여 `text` 하위 필드를 추출합니다:
```py ```py
>>> eli5 = eli5.flatten() >>> eli5 = eli5.flatten()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment