"src/nni_manager/vscode:/vscode.git/clone" did not exist on "5af01545fce906a682f44741b4f6b6bd2b1d2585"
Commit 632675ea authored by Lysandre's avatar Lysandre Committed by Lysandre Debut
Browse files

Can test examples spread over multiple blocks

parent eaa6b9af
......@@ -24,6 +24,7 @@ The tokenizer takes care of splitting the sequence into tokens available in the
::
# Continuation of the previous script
tokenized_sequence = tokenizer.tokenize(sequence)
assert tokenized_sequence == ['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
......@@ -33,6 +34,7 @@ this, the recommended being `encode` or `encode_plus`, which leverage the Rust i
::
# Continuation of the previous script
encoded_sequence = tokenizer.encode(sequence)
assert encoded_sequence == [101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102]
......@@ -48,6 +50,9 @@ For example, consider these two sequences:
::
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
sequence_a = "This is a short sequence."
sequence_b = "This is a rather long sequence. It is at least longer than the sequence A."
......@@ -65,10 +70,11 @@ In the first case, the list of IDs will be extended by the padding indices:
::
# Continuation of the previous script
padded_sequence_a = tokenizer.encode(sequence_a, max_length=19, pad_to_max_length=True)
assert padded_sequence_a = [101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert encoded_sequence_b = [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]
assert padded_sequence_a == [101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert encoded_sequence_b == [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]
These can then be converted into a tensor in PyTorch or TensorFlow. The attention mask is a binary tensor indicating
the position of the padded indices so that the model does not attend to them. For the
......@@ -79,6 +85,7 @@ The method :func:`~transformers.PreTrainedTokenizer.encode_plus` may be used to
::
# Continuation of the previous script
sequence_a_dict = tokenizer.encode_plus(sequence_a, max_length=19, pad_to_max_length=True)
assert sequence_a_dict['input_ids'] == [101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
......@@ -94,6 +101,9 @@ tokens. For example, the BERT model builds its two sequence input as such:
::
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
# [CLS] SEQ_A [SEP] SEQ_B [SEP]
sequence_a = "HuggingFace is based in NYC"
......@@ -110,10 +120,11 @@ We can leverage :func:`~transformers.PreTrainedTokenizer.encode_plus` to output
::
# Continuation of the previous script
encoded_dict = tokenizer.encode_plus(sequence_a, sequence_b)
assert sequence_a_dict['input_ids'] == [101, 20164, 10932, 2271, 7954, 1110, 1359, 1107, 17520, 102, 2777, 1110, 20164, 10932, 2271, 7954, 1359, 136, 102]
assert sequence_a_dict['token_type_ids'] == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
assert encoded_dict['input_ids'] == [101, 20164, 10932, 2271, 7954, 1110, 1359, 1107, 17520, 102, 2777, 1110, 20164, 10932, 2271, 7954, 1359, 136, 102]
assert encoded_dict['token_type_ids'] == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
The first sequence, the "context" used for the question, has all its tokens represented by :obj:`0`, whereas the
question has all its tokens represented by :obj:`1`. Some models, like :class:`~transformers.XLNetModel` use an
......
......@@ -15,6 +15,8 @@
import os
import unittest
from typing import List, Union
from .utils import require_torch
......@@ -26,34 +28,84 @@ def get_examples_from_file(file):
for i, line in enumerate(file):
if example_mode:
current_indentation = len(line) - len(line.strip()) - 1
if current_indentation == example_indentation or '"""' in line:
# Check if the indentation is 0 for the example, so that we don't exit as soon as there's a line return.
empty_line = example_indentation == 0 and len(line) == 1
# If we're back to the example indentation or if it's the end of the docstring.
if (current_indentation == example_indentation and not empty_line) or '"""' in line:
# Exit the example mode and add the example to the examples list
example_mode = False
example_indentation = None
examples.append(example)
example = []
else:
# If line is not empty, add it to the current example
if line is not "\n":
example.append(line[example_indentation + 4 : -1])
# Detect the example from '::' or 'example::'
if "example::" in line.lower():
example_mode = True
example_indentation = line.lower().find("example::")
elif "examples::" in line.lower():
example_mode = True
example_indentation = line.lower().find("examples::")
elif "::" in line.lower():
example_mode = True
example_indentation = line.lower().find("::")
return ['\n'.join(example) for example in examples]
return ["\n".join(example) for example in examples]
@require_torch
class TestCodeExamples(unittest.TestCase):
def test_configuration_examples(self):
transformers_directory = "../src/transformers"
configuration_files = [file for file in os.listdir(transformers_directory) if "configuration" in file]
def analyze_directory(
self, directory: str, identifier: Union[str, None] = None, ignore_files: Union[List[str], None] = None
):
files = [file for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))]
if identifier is not None:
files = [file for file in files if identifier in file]
for configuration_file in configuration_files:
with open(os.path.join(transformers_directory, configuration_file)) as f:
if ignore_files is not None:
files = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
with open(os.path.join(directory, file)) as f:
# Retrieve examples
examples = get_examples_from_file(f)
print("Testing", configuration_file, str(len(examples)) + "/" + str(len(examples)))
joined_examples = []
def execute_example(code_example):
exec(code_example)
with self.subTest(msg=configuration_file):
[execute_example(code_example) for code_example in examples]
# Some examples are the continuation of others.
if len(examples) > 1:
joined_examples.append(examples[0])
joined_examples_index = 0
for example in examples[1:]:
# If they contain this line, then they're a continuation of the previous script
if "# Continuation of the previous script" in example:
joined_examples[joined_examples_index] += "\n" + example
# If not, create a new example and increment the index
else:
joined_examples.append(example)
joined_examples_index += 1
print("Testing", file, str(len(joined_examples)) + "/" + str(len(joined_examples)))
# Execute sub tests with every example.
with self.subTest(msg=file):
[execute_example(code_example) for code_example in joined_examples]
def test_configuration_examples(self):
transformers_directory = "src/transformers"
configuration_files = "configuration"
ignore_files = ["configuration_auto.py", "configuration_utils.py"]
self.analyze_directory(transformers_directory, identifier=configuration_files, ignore_files=ignore_files)
def test_main_doc_examples(self):
doc_directory = "docs/source"
self.analyze_directory(doc_directory)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment