Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
61a51f5f
Unverified
Commit
61a51f5f
authored
Nov 10, 2022
by
Arthur
Committed by
GitHub
Nov 10, 2022
Browse files
Add Jukebox model (replaces #16875) (#17826)
parent
9740a03f
Changes
24
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
557 additions
and
0 deletions
+557
-0
tests/models/jukebox/__init__.py
tests/models/jukebox/__init__.py
+0
-0
tests/models/jukebox/test_modeling_jukebox.py
tests/models/jukebox/test_modeling_jukebox.py
+344
-0
tests/models/jukebox/test_tokenization_jukebox.py
tests/models/jukebox/test_tokenization_jukebox.py
+209
-0
utils/check_repo.py
utils/check_repo.py
+4
-0
No files found.
tests/models/jukebox/__init__.py
0 → 100644
View file @
61a51f5f
tests/models/jukebox/test_modeling_jukebox.py
0 → 100644
View file @
61a51f5f
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
is_torch_available
from
transformers.testing_utils
import
require_torch
,
slow
from
transformers.trainer_utils
import
set_seed
if
is_torch_available
():
import
torch
from
transformers
import
JukeboxModel
,
JukeboxTokenizer
@
require_torch
class
Jukebox1bModelTester
(
unittest
.
TestCase
):
all_model_classes
=
(
JukeboxModel
,)
if
is_torch_available
()
else
()
model_id
=
"openai/jukebox-1b-lyrics"
metas
=
dict
(
artist
=
"Zac Brown Band"
,
genres
=
"Country"
,
lyrics
=
"""I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
"""
,
)
# fmt: off
EXPECTED_OUTPUT_2
=
[
1864
,
1536
,
1213
,
1870
,
1357
,
1536
,
519
,
880
,
1323
,
789
,
1082
,
534
,
1000
,
1445
,
1105
,
1130
,
967
,
515
,
1434
,
1620
,
534
,
1495
,
283
,
1445
,
333
,
1307
,
539
,
1631
,
1528
,
375
,
1434
,
673
,
627
,
710
,
778
,
1883
,
1405
,
1276
,
1455
,
1228
]
EXPECTED_OUTPUT_1
=
[
1125
,
1751
,
697
,
1776
,
1141
,
1476
,
391
,
697
,
1125
,
684
,
867
,
416
,
844
,
1372
,
1274
,
717
,
1274
,
844
,
1299
,
1419
,
697
,
1370
,
317
,
1125
,
191
,
1440
,
1370
,
1440
,
1370
,
282
,
1621
,
1370
,
368
,
349
,
867
,
1872
,
1262
,
869
,
1728
,
747
]
EXPECTED_OUTPUT_0
=
[
1755
,
842
,
307
,
1843
,
1022
,
1395
,
234
,
1554
,
806
,
739
,
1022
,
442
,
616
,
556
,
268
,
1499
,
933
,
457
,
1440
,
1837
,
755
,
985
,
308
,
902
,
293
,
1443
,
1671
,
1141
,
1533
,
555
,
1562
,
1061
,
287
,
417
,
1022
,
2008
,
1186
,
1015
,
1777
,
268
]
EXPECTED_Y_COND
=
[
1058304
,
0
,
786432
,
7169
,
507
,
76
,
27
,
40
,
30
,
76
]
EXPECTED_PRIMED_0
=
[
390
,
1160
,
1002
,
1907
,
1788
,
1788
,
1788
,
1907
,
1002
,
1002
,
1854
,
1002
,
1002
,
1002
,
1002
,
1002
,
1002
,
1160
,
1160
,
1606
,
596
,
596
,
1160
,
1002
,
1516
,
596
,
1002
,
1002
,
1002
,
1907
,
1788
,
1788
,
1788
,
1854
,
1788
,
1907
,
1907
,
1788
,
596
,
1626
]
EXPECTED_PRIMED_1
=
[
1236
,
1668
,
1484
,
1920
,
1848
,
1409
,
139
,
864
,
1828
,
1272
,
1599
,
824
,
1672
,
139
,
555
,
1484
,
824
,
1920
,
555
,
596
,
1579
,
1599
,
1231
,
1599
,
1637
,
1407
,
212
,
824
,
1599
,
116
,
1433
,
824
,
258
,
1599
,
1433
,
1895
,
1063
,
1433
,
1433
,
1599
]
EXPECTED_PRIMED_2
=
[
1684
,
1873
,
1119
,
1189
,
395
,
611
,
1901
,
972
,
890
,
1337
,
1392
,
1927
,
96
,
972
,
672
,
780
,
1119
,
890
,
158
,
771
,
1073
,
1927
,
353
,
1331
,
1269
,
1459
,
1333
,
1645
,
812
,
1577
,
1337
,
606
,
353
,
981
,
1466
,
619
,
197
,
391
,
302
,
1930
]
EXPECTED_VQVAE_ENCODE
=
[
390
,
1160
,
1002
,
1907
,
1788
,
1788
,
1788
,
1907
,
1002
,
1002
,
1854
,
1002
,
1002
,
1002
,
1002
,
1002
,
1002
,
1160
,
1160
,
1606
,
596
,
596
,
1160
,
1002
,
1516
,
596
,
1002
,
1002
,
1002
,
1907
,
1788
,
1788
,
1788
,
1854
,
1788
,
1907
,
1907
,
1788
,
596
,
1626
]
EXPECTED_VQVAE_DECODE
=
[
-
0.0492
,
-
0.0524
,
-
0.0565
,
-
0.0640
,
-
0.0686
,
-
0.0684
,
-
0.0677
,
-
0.0664
,
-
0.0605
,
-
0.0490
,
-
0.0330
,
-
0.0168
,
-
0.0083
,
-
0.0075
,
-
0.0051
,
0.0025
,
0.0136
,
0.0261
,
0.0386
,
0.0497
,
0.0580
,
0.0599
,
0.0583
,
0.0614
,
0.0740
,
0.0889
,
0.1023
,
0.1162
,
0.1211
,
0.1212
,
0.1251
,
0.1336
,
0.1502
,
0.1686
,
0.1883
,
0.2148
,
0.2363
,
0.2458
,
0.2507
,
0.2531
]
EXPECTED_AUDIO_COND
=
[
0.0256
,
-
0.0544
,
0.1600
,
-
0.0032
,
0.1066
,
0.0825
,
-
0.0013
,
0.3440
,
0.0210
,
0.0412
,
-
0.1777
,
-
0.0892
,
-
0.0164
,
0.0285
,
-
0.0613
,
-
0.0617
,
-
0.0137
,
-
0.0201
,
-
0.0175
,
0.0215
,
-
0.0627
,
0.0520
,
-
0.0730
,
0.0970
,
-
0.0100
,
0.0442
,
-
0.0586
,
0.0207
,
-
0.0015
,
-
0.0082
]
EXPECTED_META_COND
=
[
0.0415
,
0.0877
,
0.0022
,
-
0.0055
,
0.0751
,
0.0334
,
0.0324
,
-
0.0068
,
0.0011
,
0.0017
,
-
0.0676
,
0.0655
,
-
0.0143
,
0.0399
,
0.0303
,
0.0743
,
-
0.0168
,
-
0.0394
,
-
0.1113
,
0.0124
,
0.0442
,
0.0267
,
-
0.0003
,
-
0.1536
,
-
0.0116
,
-
0.1837
,
-
0.0180
,
-
0.1026
,
-
0.0777
,
-
0.0456
]
EXPECTED_LYRIC_COND
=
[
76
,
27
,
40
,
30
,
76
,
46
,
44
,
47
,
40
,
37
,
38
,
31
,
45
,
45
,
76
,
38
,
31
,
33
,
45
,
76
,
41
,
32
,
76
,
45
,
46
,
41
,
40
,
31
,
78
,
76
]
# fmt: on
def
prepare_inputs
(
self
):
tokenizer
=
JukeboxTokenizer
.
from_pretrained
(
self
.
model_id
)
tokens
=
tokenizer
(
**
self
.
metas
)[
"input_ids"
]
return
tokens
@
slow
def
test_sampling
(
self
):
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
()
labels
=
self
.
prepare_inputs
()
set_seed
(
0
)
zs
=
[
torch
.
zeros
(
1
,
0
,
dtype
=
torch
.
long
).
cpu
()
for
_
in
range
(
3
)]
zs
=
model
.
_sample
(
zs
,
labels
,
[
0
],
sample_length
=
40
*
model
.
priors
[
0
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
0
][
0
],
torch
.
tensor
(
self
.
EXPECTED_OUTPUT_2
))
set_seed
(
0
)
zs
=
model
.
_sample
(
zs
,
labels
,
[
1
],
sample_length
=
40
*
model
.
priors
[
1
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
1
][
0
],
torch
.
tensor
(
self
.
EXPECTED_OUTPUT_1
))
set_seed
(
0
)
zs
=
model
.
_sample
(
zs
,
labels
,
[
2
],
sample_length
=
40
*
model
.
priors
[
2
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
2
][
0
],
torch
.
tensor
(
self
.
EXPECTED_OUTPUT_0
))
@
slow
def
test_conditioning
(
self
):
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
()
labels
=
self
.
prepare_inputs
()
set_seed
(
0
)
zs
=
[
torch
.
zeros
(
1
,
0
,
dtype
=
torch
.
long
)
for
_
in
range
(
3
)]
top_prior
=
model
.
priors
[
0
]
start
=
0
music_token_conds
=
top_prior
.
get_music_tokens_conds
(
zs
,
start
=
start
,
end
=
start
+
top_prior
.
n_ctx
)
metadata
=
top_prior
.
get_metadata
(
labels
[
0
].
clone
(),
start
,
1058304
,
0
)
self
.
assertIsNone
(
music_token_conds
)
self
.
assertListEqual
(
metadata
.
numpy
()[
0
][:
10
].
tolist
(),
self
.
EXPECTED_Y_COND
)
audio_conditioning
,
metadata_conditioning
,
lyric_tokens
=
top_prior
.
get_cond
(
music_token_conds
,
metadata
)
torch
.
testing
.
assert_allclose
(
audio_conditioning
[
0
][
0
][:
30
].
detach
(),
torch
.
tensor
(
self
.
EXPECTED_AUDIO_COND
),
atol
=
1e-4
,
rtol
=
1e-4
)
torch
.
testing
.
assert_allclose
(
metadata_conditioning
[
0
][
0
][:
30
].
detach
(),
torch
.
tensor
(
self
.
EXPECTED_META_COND
),
atol
=
1e-4
,
rtol
=
1e-4
)
torch
.
testing
.
assert_allclose
(
lyric_tokens
[
0
,
:
30
].
detach
(),
torch
.
tensor
(
self
.
EXPECTED_LYRIC_COND
),
atol
=
1e-4
,
rtol
=
1e-4
)
@
slow
def
test_primed_sampling
(
self
):
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
()
set_seed
(
0
)
waveform
=
torch
.
rand
((
1
,
5120
,
1
))
tokens
=
[
i
for
i
in
self
.
prepare_inputs
()]
zs
=
[
model
.
vqvae
.
encode
(
waveform
,
start_level
=
2
,
bs_chunks
=
waveform
.
shape
[
0
])[
0
],
None
,
None
]
zs
=
model
.
_sample
(
zs
,
tokens
,
sample_levels
=
[
0
],
save_results
=
False
,
sample_length
=
40
*
model
.
priors
[
0
].
raw_to_tokens
)
torch
.
testing
.
assert_allclose
(
zs
[
0
][
0
][:
40
],
torch
.
tensor
(
self
.
EXPECTED_PRIMED_0
))
upper_2
=
torch
.
cat
((
zs
[
0
],
torch
.
zeros
(
1
,
2048
-
zs
[
0
].
shape
[
-
1
])),
dim
=-
1
).
long
()
zs
=
[
upper_2
,
model
.
vqvae
.
encode
(
waveform
,
start_level
=
1
,
bs_chunks
=
waveform
.
shape
[
0
])[
0
],
None
]
zs
=
model
.
_sample
(
zs
,
tokens
,
sample_levels
=
[
1
],
save_results
=
False
,
sample_length
=
40
*
model
.
priors
[
1
].
raw_to_tokens
)
torch
.
testing
.
assert_allclose
(
zs
[
1
][
0
][:
40
],
torch
.
tensor
(
self
.
EXPECTED_PRIMED_1
))
upper_1
=
torch
.
cat
((
zs
[
1
],
torch
.
zeros
(
1
,
2048
-
zs
[
1
].
shape
[
-
1
])),
dim
=-
1
).
long
()
zs
=
[
upper_2
,
upper_1
,
model
.
vqvae
.
encode
(
waveform
,
start_level
=
0
,
bs_chunks
=
waveform
.
shape
[
0
])[
0
]]
zs
=
model
.
_sample
(
zs
,
tokens
,
sample_levels
=
[
2
],
save_results
=
False
,
sample_length
=
40
*
model
.
priors
[
2
].
raw_to_tokens
)
torch
.
testing
.
assert_allclose
(
zs
[
2
][
0
][:
40
].
cpu
(),
torch
.
tensor
(
self
.
EXPECTED_PRIMED_2
))
@
slow
def
test_vqvae
(
self
):
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
()
set_seed
(
0
)
x
=
torch
.
rand
((
1
,
5120
,
1
))
with
torch
.
no_grad
():
zs
=
model
.
vqvae
.
encode
(
x
,
start_level
=
2
,
bs_chunks
=
x
.
shape
[
0
])
torch
.
testing
.
assert_allclose
(
zs
[
0
][
0
],
torch
.
tensor
(
self
.
EXPECTED_VQVAE_ENCODE
))
with
torch
.
no_grad
():
x
=
model
.
vqvae
.
decode
(
zs
,
start_level
=
2
,
bs_chunks
=
x
.
shape
[
0
])
torch
.
testing
.
assert_allclose
(
x
[
0
,
:
40
,
0
],
torch
.
tensor
(
self
.
EXPECTED_VQVAE_DECODE
),
atol
=
1e-4
,
rtol
=
1e-4
)
@
require_torch
class
Jukebox5bModelTester
(
unittest
.
TestCase
):
all_model_classes
=
(
JukeboxModel
,)
if
is_torch_available
()
else
()
model_id
=
"openai/jukebox-5b-lyrics"
metas
=
dict
(
artist
=
"Zac Brown Band"
,
genres
=
"Country"
,
lyrics
=
"""I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
"""
,
)
# fmt: off
EXPECTED_OUTPUT_2
=
[
1489
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
1489
,
1489
,
1489
,
1489
,
1150
,
1853
,
1509
,
1150
,
1357
,
1509
,
6
,
1272
]
EXPECTED_OUTPUT_1
=
[
1125
,
416
,
1125
,
1125
,
1125
,
1125
,
1125
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
]
EXPECTED_OUTPUT_0
=
[
1755
,
1061
,
234
,
1755
,
1061
,
1755
,
185
,
290
,
307
,
307
,
616
,
616
,
616
,
616
,
616
,
616
,
307
,
290
,
417
,
1755
,
234
,
1755
,
185
,
290
,
290
,
290
,
307
,
616
,
616
,
616
,
616
,
616
,
290
,
234
,
234
,
1755
,
234
,
234
,
1755
,
234
,
185
,
185
,
307
,
616
,
616
,
616
,
616
,
290
,
1755
,
1755
,
1755
,
234
,
234
,
1755
,
1572
,
290
,
307
,
616
,
34
,
616
]
EXPECTED_GPU_OUTPUTS_2
=
[
1489
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
,
653
]
EXPECTED_GPU_OUTPUTS_1
=
[
1125
,
1125
,
416
,
1125
,
1125
,
416
,
1125
,
1125
,
416
,
416
,
1125
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
,
416
]
EXPECTED_GPU_OUTPUTS_0
=
[
491
,
1755
,
34
,
1613
,
1755
,
417
,
992
,
1613
,
222
,
842
,
1353
,
1613
,
844
,
632
,
185
,
1613
,
844
,
632
,
185
,
1613
,
185
,
842
,
677
,
1613
,
185
,
114
,
1353
,
1613
,
307
,
89
,
844
,
1613
,
307
,
1332
,
234
,
1979
,
307
,
89
,
1353
,
616
,
34
,
842
,
185
,
842
,
34
,
842
,
185
,
842
,
307
,
114
,
185
,
89
,
34
,
1268
,
185
,
89
,
34
,
842
,
185
,
89
]
# fmt: on
def
prepare_inputs
(
self
,
model_id
):
tokenizer
=
JukeboxTokenizer
.
from_pretrained
(
model_id
)
tokens
=
tokenizer
(
**
self
.
metas
)[
"input_ids"
]
return
tokens
@
slow
def
test_sampling
(
self
):
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
()
labels
=
self
.
prepare_inputs
(
self
.
model_id
)
set_seed
(
0
)
zs
=
[
torch
.
zeros
(
1
,
0
,
dtype
=
torch
.
long
).
cpu
()
for
_
in
range
(
3
)]
zs
=
model
.
_sample
(
zs
,
labels
,
[
0
],
sample_length
=
60
*
model
.
priors
[
0
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
0
][
0
],
torch
.
tensor
(
self
.
EXPECTED_OUTPUT_2
))
set_seed
(
0
)
zs
=
model
.
_sample
(
zs
,
labels
,
[
1
],
sample_length
=
60
*
model
.
priors
[
1
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
1
][
0
],
torch
.
tensor
(
self
.
EXPECTED_OUTPUT_1
))
set_seed
(
0
)
zs
=
model
.
_sample
(
zs
,
labels
,
[
2
],
sample_length
=
60
*
model
.
priors
[
2
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
2
][
0
],
torch
.
tensor
(
self
.
EXPECTED_OUTPUT_0
))
@
slow
def
test_slow_sampling
(
self
):
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
().
to
(
"cuda"
)
labels
=
[
i
.
cuda
()
for
i
in
self
.
prepare_inputs
(
self
.
model_id
)]
set_seed
(
0
)
model
.
priors
[
0
].
cuda
()
zs
=
[
torch
.
zeros
(
1
,
0
,
dtype
=
torch
.
long
).
cuda
()
for
_
in
range
(
3
)]
zs
=
model
.
_sample
(
zs
,
labels
,
[
0
],
sample_length
=
60
*
model
.
priors
[
0
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
0
][
0
].
cpu
(),
torch
.
tensor
(
self
.
EXPECTED_GPU_OUTPUTS_2
))
model
.
priors
[
0
].
cpu
()
set_seed
(
0
)
model
.
priors
[
1
].
cuda
()
zs
=
model
.
_sample
(
zs
,
labels
,
[
1
],
sample_length
=
60
*
model
.
priors
[
1
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
1
][
0
].
cpu
(),
torch
.
tensor
(
self
.
EXPECTED_GPU_OUTPUTS_1
))
model
.
priors
[
1
].
cpu
()
set_seed
(
0
)
model
.
priors
[
2
].
cuda
()
zs
=
model
.
_sample
(
zs
,
labels
,
[
2
],
sample_length
=
60
*
model
.
priors
[
2
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
2
][
0
].
cpu
(),
torch
.
tensor
(
self
.
EXPECTED_GPU_OUTPUTS_0
))
@
slow
def
test_fp16_slow_sampling
(
self
):
model
=
JukeboxModel
.
from_pretrained
(
self
.
model_id
,
min_duration
=
0
).
eval
().
half
().
to
(
"cuda"
)
labels
=
[
i
.
cuda
()
for
i
in
self
.
prepare_inputs
(
self
.
model_id
)]
set_seed
(
0
)
zs
=
[
torch
.
zeros
(
1
,
0
,
dtype
=
torch
.
long
).
cuda
()
for
_
in
range
(
3
)]
zs
=
model
.
_sample
(
zs
,
labels
,
[
0
],
sample_length
=
60
*
model
.
priors
[
0
].
raw_to_tokens
,
save_results
=
False
)
torch
.
testing
.
assert_allclose
(
zs
[
0
][
0
].
cpu
(),
torch
.
tensor
(
self
.
EXPECTED_GPU_OUTPUTS_2
))
tests/models/jukebox/test_tokenization_jukebox.py
0 → 100644
View file @
61a51f5f
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
transformers
import
JukeboxTokenizer
from
transformers.testing_utils
import
require_torch
class
JukeboxTokenizationTest
(
unittest
.
TestCase
):
tokenizer_class
=
JukeboxTokenizer
metas
=
dict
(
artist
=
"Zac Brown Band"
,
genres
=
"Country"
,
lyrics
=
"""I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
"""
,
)
@
require_torch
def
test_1b_lyrics_tokenizer
(
self
):
"""
how to run the same test with openAI
...
"""
import
torch
tokenizer
=
JukeboxTokenizer
.
from_pretrained
(
"openai/jukebox-1b-lyrics"
)
tokens
=
tokenizer
(
**
self
.
metas
)[
"input_ids"
]
# fmt: off
EXPECTED_OUTPUT
=
[
torch
.
tensor
([[
0
,
0
,
0
,
7169
,
507
,
9
,
76
,
39
,
31
,
46
,
76
,
27
,
76
,
46
,
44
,
27
,
48
,
31
,
38
,
38
,
31
,
44
,
76
,
32
,
44
,
41
,
39
,
76
,
27
,
40
,
76
,
27
,
40
,
46
,
35
,
43
,
47
,
31
,
76
,
38
,
27
,
40
,
30
,
64
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
23
,
34
,
41
,
76
,
45
,
27
,
35
,
30
,
76
,
71
,
20
,
49
,
41
,
76
,
48
,
27
,
45
,
46
,
76
,
27
,
40
,
30
,
76
,
46
,
44
,
47
,
40
,
37
,
38
,
31
,
45
,
45
,
76
,
38
,
31
,
33
,
45
,
76
,
41
,
32
,
76
,
45
,
46
,
41
,
40
,
31
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
19
,
46
,
27
,
40
,
30
,
76
,
35
,
40
,
76
,
46
,
34
,
31
,
76
,
30
,
31
,
45
,
31
,
44
,
46
,
63
,
76
,
63
,
76
,
63
,
76
,
63
,
76
,
14
,
31
,
27
,
44
,
76
,
46
,
34
,
31
,
39
,
64
,
76
,
41
,
40
,
76
,
46
,
34
,
31
,
76
,
45
,
27
,
40
,
30
,
64
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
8
,
27
,
38
,
32
,
76
,
45
,
47
,
40
,
37
,
76
,
27
,
76
,
45
,
34
,
27
,
46
,
46
,
31
,
44
,
31
,
30
,
76
,
48
,
35
,
45
,
27
,
33
,
31
,
76
,
38
,
35
,
31
,
45
,
64
,
76
,
49
,
34
,
41
,
45
,
31
,
76
,
32
,
44
,
41
,
49
,
40
,
64
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
1
,
40
,
30
,
76
,
49
,
44
,
35
,
40
,
37
,
38
,
31
,
30
,
76
,
38
,
35
,
42
,
64
,
76
,
27
,
40
,
30
,
76
,
45
,
40
,
31
,
31
,
44
,
76
,
41
,
32
,
76
,
29
,
41
,
38
,
30
,
76
,
29
,
41
,
39
,
39
,
27
,
40
,
30
,
64
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
20
,
31
,
38
,
38
,
76
,
46
,
34
,
27
,
46
,
76
,
35
,
46
,
45
,
76
,
45
,
29
,
47
,
38
,
42
,
46
,
41
,
44
,
76
,
49
,
31
,
38
,
38
,
76
,
46
,
34
,
41
,
45
,
31
,
76
,
42
,
27
,
45
,
45
,
35
,
41
,
40
,
45
,
76
,
44
,
31
,
27
,
30
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
23
,
34
,
35
,
29
,
34
,
76
,
51
,
31
,
46
,
76
,
45
,
47
,
44
,
48
,
35
,
48
,
31
,
64
,
76
,
45
,
46
,
27
,
39
,
42
,
31
,
30
,
76
,
41
,
40
,
76
,
46
,
34
,
31
,
45
,
31
,
76
,
38
,
35
,
32
,
31
,
38
,
31
,
45
,
45
,
76
,
46
,
34
,
35
,
40
,
33
,
45
,
64
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
20
,
34
,
31
,
76
,
34
,
27
,
40
,
30
,
76
,
46
,
34
,
27
,
46
,
76
,
39
,
41
,
29
,
37
,
31
,
30
,
76
,
46
,
34
,
31
,
39
,
64
,
76
,
27
,
40
,
30
,
76
,
46
,
34
,
31
,
76
,
34
,
31
,
27
,
44
,
46
,
76
,
46
,
34
,
27
,
46
,
76
,
32
,
31
,
30
,
66
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
1
,
40
,
30
,
76
,
41
,
40
,
76
,
46
,
34
,
31
,
76
,
42
,
31
,
30
,
31
,
45
,
46
,
27
,
38
,
64
,
76
,
46
,
34
,
31
,
45
,
31
,
76
,
49
,
41
,
44
,
30
,
45
,
76
,
27
,
42
,
42
,
31
,
27
,
44
,
65
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
13
,
51
,
76
,
40
,
27
,
39
,
31
,
76
,
35
,
45
,
76
,
15
,
52
,
51
,
39
,
27
,
40
,
30
,
35
,
27
,
45
,
64
,
76
,
11
,
35
,
40
,
33
,
76
,
41
,
32
,
76
,
11
,
35
,
40
,
33
,
45
,
66
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
12
,
41
,
41
,
37
,
76
,
41
,
40
,
76
,
39
,
51
,
76
,
23
,
41
,
44
,
37
,
45
,
64
,
76
,
51
,
31
,
76
,
13
,
35
,
33
,
34
,
46
,
51
,
64
,
76
,
27
,
40
,
30
,
76
,
30
,
31
,
45
,
42
,
27
,
35
,
44
,
67
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
14
,
41
,
46
,
34
,
35
,
40
,
33
,
76
,
28
,
31
,
45
,
35
,
30
,
31
,
76
,
44
,
31
,
39
,
27
,
35
,
40
,
45
,
63
,
76
,
18
,
41
,
47
,
40
,
30
,
76
,
46
,
34
,
31
,
76
,
30
,
31
,
29
,
27
,
51
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
15
,
32
,
76
,
46
,
34
,
27
,
46
,
76
,
29
,
41
,
38
,
41
,
45
,
45
,
27
,
38
,
76
,
23
,
44
,
31
,
29
,
37
,
64
,
76
,
28
,
41
,
47
,
40
,
30
,
38
,
31
,
45
,
45
,
76
,
27
,
40
,
30
,
76
,
28
,
27
,
44
,
31
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
20
,
34
,
31
,
76
,
38
,
41
,
40
,
31
,
76
,
27
,
40
,
30
,
76
,
38
,
31
,
48
,
31
,
38
,
76
,
45
,
27
,
40
,
30
,
45
,
76
,
45
,
46
,
44
,
31
,
46
,
29
,
34
,
76
,
32
,
27
,
44
,
76
,
27
,
49
,
27
,
51
,
78
,
76
,
76
,
76
,
76
,
76
,
76
,
76
,
76
]]),
torch
.
tensor
([[
0
,
0
,
0
,
1069
,
11
]]),
torch
.
tensor
([[
0
,
0
,
0
,
1069
,
11
]]),
]
# fmt: on
self
.
assertTrue
(
torch
.
allclose
(
tokens
[
0
],
EXPECTED_OUTPUT
[
0
]))
self
.
assertTrue
(
torch
.
allclose
(
tokens
[
1
],
EXPECTED_OUTPUT
[
1
]))
self
.
assertTrue
(
torch
.
allclose
(
tokens
[
2
],
EXPECTED_OUTPUT
[
2
]))
@
require_torch
def
test_5b_lyrics_tokenizer
(
self
):
"""
The outputs are similar that open AI but do not have the same format as this one is adapted to the HF integration.
"""
import
torch
tokenizer
=
JukeboxTokenizer
.
from_pretrained
(
"openai/jukebox-5b-lyrics"
)
tokens
=
tokenizer
(
**
self
.
metas
)[
"input_ids"
]
# fmt: off
EXPECTED_OUTPUT
=
[
torch
.
tensor
([[
0
,
0
,
0
,
1069
,
11
,
-
1
,
-
1
,
-
1
,
-
1
,
9
,
77
,
39
,
31
,
46
,
77
,
27
,
77
,
46
,
44
,
27
,
48
,
31
,
38
,
38
,
31
,
44
,
77
,
32
,
44
,
41
,
39
,
77
,
27
,
40
,
77
,
27
,
40
,
46
,
35
,
43
,
47
,
31
,
77
,
38
,
27
,
40
,
30
,
64
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
23
,
34
,
41
,
77
,
45
,
27
,
35
,
30
,
77
,
72
,
20
,
49
,
41
,
77
,
48
,
27
,
45
,
46
,
77
,
27
,
40
,
30
,
77
,
46
,
44
,
47
,
40
,
37
,
38
,
31
,
45
,
45
,
77
,
38
,
31
,
33
,
45
,
77
,
41
,
32
,
77
,
45
,
46
,
41
,
40
,
31
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
19
,
46
,
27
,
40
,
30
,
77
,
35
,
40
,
77
,
46
,
34
,
31
,
77
,
30
,
31
,
45
,
31
,
44
,
46
,
63
,
77
,
63
,
77
,
63
,
77
,
63
,
77
,
14
,
31
,
27
,
44
,
77
,
46
,
34
,
31
,
39
,
64
,
77
,
41
,
40
,
77
,
46
,
34
,
31
,
77
,
45
,
27
,
40
,
30
,
64
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
8
,
27
,
38
,
32
,
77
,
45
,
47
,
40
,
37
,
77
,
27
,
77
,
45
,
34
,
27
,
46
,
46
,
31
,
44
,
31
,
30
,
77
,
48
,
35
,
45
,
27
,
33
,
31
,
77
,
38
,
35
,
31
,
45
,
64
,
77
,
49
,
34
,
41
,
45
,
31
,
77
,
32
,
44
,
41
,
49
,
40
,
64
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
1
,
40
,
30
,
77
,
49
,
44
,
35
,
40
,
37
,
38
,
31
,
30
,
77
,
38
,
35
,
42
,
64
,
77
,
27
,
40
,
30
,
77
,
45
,
40
,
31
,
31
,
44
,
77
,
41
,
32
,
77
,
29
,
41
,
38
,
30
,
77
,
29
,
41
,
39
,
39
,
27
,
40
,
30
,
64
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
20
,
31
,
38
,
38
,
77
,
46
,
34
,
27
,
46
,
77
,
35
,
46
,
45
,
77
,
45
,
29
,
47
,
38
,
42
,
46
,
41
,
44
,
77
,
49
,
31
,
38
,
38
,
77
,
46
,
34
,
41
,
45
,
31
,
77
,
42
,
27
,
45
,
45
,
35
,
41
,
40
,
45
,
77
,
44
,
31
,
27
,
30
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
23
,
34
,
35
,
29
,
34
,
77
,
51
,
31
,
46
,
77
,
45
,
47
,
44
,
48
,
35
,
48
,
31
,
64
,
77
,
45
,
46
,
27
,
39
,
42
,
31
,
30
,
77
,
41
,
40
,
77
,
46
,
34
,
31
,
45
,
31
,
77
,
38
,
35
,
32
,
31
,
38
,
31
,
45
,
45
,
77
,
46
,
34
,
35
,
40
,
33
,
45
,
64
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
20
,
34
,
31
,
77
,
34
,
27
,
40
,
30
,
77
,
46
,
34
,
27
,
46
,
77
,
39
,
41
,
29
,
37
,
31
,
30
,
77
,
46
,
34
,
31
,
39
,
64
,
77
,
27
,
40
,
30
,
77
,
46
,
34
,
31
,
77
,
34
,
31
,
27
,
44
,
46
,
77
,
46
,
34
,
27
,
46
,
77
,
32
,
31
,
30
,
66
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
1
,
40
,
30
,
77
,
41
,
40
,
77
,
46
,
34
,
31
,
77
,
42
,
31
,
30
,
31
,
45
,
46
,
27
,
38
,
64
,
77
,
46
,
34
,
31
,
45
,
31
,
77
,
49
,
41
,
44
,
30
,
45
,
77
,
27
,
42
,
42
,
31
,
27
,
44
,
65
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
13
,
51
,
77
,
40
,
27
,
39
,
31
,
77
,
35
,
45
,
77
,
15
,
52
,
51
,
39
,
27
,
40
,
30
,
35
,
27
,
45
,
64
,
77
,
11
,
35
,
40
,
33
,
77
,
41
,
32
,
77
,
11
,
35
,
40
,
33
,
45
,
66
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
12
,
41
,
41
,
37
,
77
,
41
,
40
,
77
,
39
,
51
,
77
,
23
,
41
,
44
,
37
,
45
,
64
,
77
,
51
,
31
,
77
,
13
,
35
,
33
,
34
,
46
,
51
,
64
,
77
,
27
,
40
,
30
,
77
,
30
,
31
,
45
,
42
,
27
,
35
,
44
,
67
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
14
,
41
,
46
,
34
,
35
,
40
,
33
,
77
,
28
,
31
,
45
,
35
,
30
,
31
,
77
,
44
,
31
,
39
,
27
,
35
,
40
,
45
,
63
,
77
,
18
,
41
,
47
,
40
,
30
,
77
,
46
,
34
,
31
,
77
,
30
,
31
,
29
,
27
,
51
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
15
,
32
,
77
,
46
,
34
,
27
,
46
,
77
,
29
,
41
,
38
,
41
,
45
,
45
,
27
,
38
,
77
,
23
,
44
,
31
,
29
,
37
,
64
,
77
,
28
,
41
,
47
,
40
,
30
,
38
,
31
,
45
,
45
,
77
,
27
,
40
,
30
,
77
,
28
,
27
,
44
,
31
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
20
,
34
,
31
,
77
,
38
,
41
,
40
,
31
,
77
,
27
,
40
,
30
,
77
,
38
,
31
,
48
,
31
,
38
,
77
,
45
,
27
,
40
,
30
,
45
,
77
,
45
,
46
,
44
,
31
,
46
,
29
,
34
,
77
,
32
,
27
,
44
,
77
,
27
,
49
,
27
,
51
,
79
,
77
,
77
,
77
,
77
,
77
,
77
,
77
,
77
]]),
torch
.
tensor
([[
0
,
0
,
0
,
1069
,
11
,
-
1
,
-
1
,
-
1
,
-
1
]]),
torch
.
tensor
([[
0
,
0
,
0
,
1069
,
11
,
-
1
,
-
1
,
-
1
,
-
1
]]),
]
# fmt: on
self
.
assertTrue
(
torch
.
allclose
(
tokens
[
0
],
EXPECTED_OUTPUT
[
0
]))
self
.
assertTrue
(
torch
.
allclose
(
tokens
[
1
],
EXPECTED_OUTPUT
[
1
]))
self
.
assertTrue
(
torch
.
allclose
(
tokens
[
2
],
EXPECTED_OUTPUT
[
2
]))
utils/check_repo.py
View file @
61a51f5f
...
@@ -51,6 +51,8 @@ IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
...
@@ -51,6 +51,8 @@ IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
"TableTransformerDecoder"
,
# Building part of bigger (tested) model.
"TableTransformerDecoder"
,
# Building part of bigger (tested) model.
"TimeSeriesTransformerEncoder"
,
# Building part of bigger (tested) model.
"TimeSeriesTransformerEncoder"
,
# Building part of bigger (tested) model.
"TimeSeriesTransformerDecoder"
,
# Building part of bigger (tested) model.
"TimeSeriesTransformerDecoder"
,
# Building part of bigger (tested) model.
"JukeboxVQVAE"
,
# Building part of bigger (tested) model.
"JukeboxPrior"
,
# Building part of bigger (tested) model.
"DeformableDetrEncoder"
,
# Building part of bigger (tested) model.
"DeformableDetrEncoder"
,
# Building part of bigger (tested) model.
"DeformableDetrDecoder"
,
# Building part of bigger (tested) model.
"DeformableDetrDecoder"
,
# Building part of bigger (tested) model.
"OPTDecoder"
,
# Building part of bigger (tested) model.
"OPTDecoder"
,
# Building part of bigger (tested) model.
...
@@ -146,6 +148,8 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
...
@@ -146,6 +148,8 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
"CLIPSegTextModel"
,
"CLIPSegTextModel"
,
"EsmForProteinFolding"
,
"EsmForProteinFolding"
,
"TimeSeriesTransformerForPrediction"
,
"TimeSeriesTransformerForPrediction"
,
"JukeboxVQVAE"
,
"JukeboxPrior"
,
"PegasusXEncoder"
,
"PegasusXEncoder"
,
"PegasusXDecoder"
,
"PegasusXDecoder"
,
"PegasusXDecoderWrapper"
,
"PegasusXDecoderWrapper"
,
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment