Unverified Commit 61518e2d authored by Sam Shleifer's avatar Sam Shleifer Committed by GitHub
Browse files

[s2s] run_eval.py QOL improvements and cleanup(#6746)

parent 434936f3
import argparse
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
......@@ -8,10 +12,12 @@ from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
logger = getLogger(__name__)
try:
from .utils import calculate_bleu, calculate_rouge, trim_batch, use_task_specific_params
from .utils import calculate_bleu, calculate_rouge, use_task_specific_params
except ImportError:
from utils import calculate_bleu, calculate_rouge, trim_batch, use_task_specific_params
from utils import calculate_bleu, calculate_rouge, use_task_specific_params
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
......@@ -23,7 +29,7 @@ def chunks(lst, n):
def generate_summaries_or_translations(
examples: list,
examples: List[str],
out_file: str,
model_name: str,
batch_size: int = 8,
......@@ -31,36 +37,39 @@ def generate_summaries_or_translations(
fp16=False,
task="summarization",
decoder_start_token_id=None,
**gen_kwargs,
) -> None:
**generate_kwargs,
) -> Dict:
"""Save model.generate results to <out_file>, and return how long it took."""
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if fp16:
model = model.half()
if decoder_start_token_id is None:
decoder_start_token_id = gen_kwargs.pop("decoder_start_token_id", None)
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type.
# update config with summarization specific params
start_time = time.time()
# update config with task specific params
use_task_specific_params(model, task)
for batch in tqdm(list(chunks(examples, batch_size))):
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
if "t5" in model_name:
batch = [model.config.prefix + text for text in batch]
batch = tokenizer(batch, return_tensors="pt", truncation=True, padding="max_length").to(device)
input_ids, attention_mask = trim_batch(**batch, pad_token_id=tokenizer.pad_token_id)
examples_chunk = [model.config.prefix + text for text in examples_chunk]
batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device)
summaries = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
input_ids=batch.input_ids,
attention_mask=batch.attention_mask,
decoder_start_token_id=decoder_start_token_id,
**gen_kwargs,
**generate_kwargs,
)
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
fout.close()
runtime = time.time() - start_time
n_obs = len(examples)
return dict(n_obs=n_obs, runtime=runtime, seconds_per_sample=round(runtime / n_obs, 4))
def run_generate():
......@@ -70,7 +79,13 @@ def run_generate():
parser.add_argument("save_path", type=str, help="where to save summaries")
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt")
parser.add_argument("--score_path", type=str, required=False, help="where to save the rouge score in json format")
parser.add_argument(
"--score_path",
type=str,
required=False,
default="metrics.json",
help="where to save the rouge score in json format",
)
parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.")
parser.add_argument("--task", type=str, default="summarization", help="typically translation or summarization")
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
......@@ -79,7 +94,7 @@ def run_generate():
type=int,
default=None,
required=False,
help="decoder_start_token_id (otherwise will look at config)",
help="Defaults to using config",
)
parser.add_argument(
"--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all."
......@@ -90,7 +105,9 @@ def run_generate():
if args.n_obs > 0:
examples = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=True)
generate_summaries_or_translations(
if args.reference_path is None and Path(args.score_path).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.")
runtime_metrics = generate_summaries_or_translations(
examples,
args.save_path,
args.model_name,
......@@ -107,9 +124,10 @@ def run_generate():
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)]
scores: dict = score_fn(output_lns, reference_lns)
scores.update(runtime_metrics)
print(scores)
if args.score_path is not None:
json.dump(scores, open(args.score_path, "w+"))
json.dump(scores, open(args.score_path, "w"))
return scores
......
......@@ -252,13 +252,24 @@ class TestSummarizationDistiller(unittest.TestCase):
@pytest.mark.parametrize(["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
def test_run_eval_bart(model):
def test_run_eval(model):
input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
output_file_name = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(input_file_name, articles)
testargs = ["run_eval.py", model, str(input_file_name), str(output_file_name)] # TODO: test score_path
score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
task = "translation_en_to_de" if model == T5_TINY else "summarization"
testargs = [
"run_eval.py",
model,
str(input_file_name),
str(output_file_name),
"--score_path",
score_path,
"--task",
task,
]
with patch.object(sys, "argv", testargs):
run_generate()
assert Path(output_file_name).exists()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment