Unverified Commit 60d5f8f9 authored by Zach Mueller's avatar Zach Mueller Committed by GitHub
Browse files

🚨🚨🚨Deprecate `evaluation_strategy` to `eval_strategy`🚨🚨🚨 (#30190)

* Alias

* Note alias

* Tests and src

* Rest

* Clean

* Change typing?

* Fix tests

* Deprecation versions
parent c86d020e
...@@ -128,12 +128,12 @@ Call [`~evaluate.compute`] on `metric` to calculate the accuracy of your predict ...@@ -128,12 +128,12 @@ Call [`~evaluate.compute`] on `metric` to calculate the accuracy of your predict
... return metric.compute(predictions=predictions, references=labels) ... return metric.compute(predictions=predictions, references=labels)
``` ```
If you'd like to monitor your evaluation metrics during fine-tuning, specify the `evaluation_strategy` parameter in your training arguments to report the evaluation metric at the end of each epoch: If you'd like to monitor your evaluation metrics during fine-tuning, specify the `eval_strategy` parameter in your training arguments to report the evaluation metric at the end of each epoch:
```py ```py
>>> from transformers import TrainingArguments, Trainer >>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch") >>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
``` ```
### Trainer ### Trainer
......
...@@ -260,7 +260,7 @@ En este punto, solo quedan tres pasos: ...@@ -260,7 +260,7 @@ En este punto, solo quedan tres pasos:
... gradient_checkpointing=True, ... gradient_checkpointing=True,
... fp16=True, ... fp16=True,
... group_by_length=True, ... group_by_length=True,
... evaluation_strategy="steps", ... eval_strategy="steps",
... per_device_eval_batch_size=8, ... per_device_eval_batch_size=8,
... save_steps=1000, ... save_steps=1000,
... eval_steps=1000, ... eval_steps=1000,
......
...@@ -188,7 +188,7 @@ training_args = TrainingArguments( ...@@ -188,7 +188,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=32, per_device_eval_batch_size=32,
gradient_accumulation_steps=2, gradient_accumulation_steps=2,
save_total_limit=3, save_total_limit=3,
evaluation_strategy="steps", eval_strategy="steps",
eval_steps=50, eval_steps=50,
save_strategy="steps", save_strategy="steps",
save_steps=50, save_steps=50,
......
...@@ -143,7 +143,7 @@ Al llegar a este punto, solo quedan tres pasos: ...@@ -143,7 +143,7 @@ Al llegar a este punto, solo quedan tres pasos:
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="./results", ... output_dir="./results",
... per_device_train_batch_size=16, ... per_device_train_batch_size=16,
... evaluation_strategy="steps", ... eval_strategy="steps",
... num_train_epochs=4, ... num_train_epochs=4,
... fp16=True, ... fp16=True,
... save_steps=100, ... save_steps=100,
......
...@@ -232,7 +232,7 @@ A este punto, solo faltan tres pasos: ...@@ -232,7 +232,7 @@ A este punto, solo faltan tres pasos:
```py ```py
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="./results", ... output_dir="./results",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... learning_rate=2e-5, ... learning_rate=2e-5,
... weight_decay=0.01, ... weight_decay=0.01,
... ) ... )
...@@ -338,7 +338,7 @@ A este punto, solo faltan tres pasos: ...@@ -338,7 +338,7 @@ A este punto, solo faltan tres pasos:
```py ```py
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="./results", ... output_dir="./results",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... learning_rate=2e-5, ... learning_rate=2e-5,
... num_train_epochs=3, ... num_train_epochs=3,
... weight_decay=0.01, ... weight_decay=0.01,
......
...@@ -212,7 +212,7 @@ En este punto, solo quedan tres pasos: ...@@ -212,7 +212,7 @@ En este punto, solo quedan tres pasos:
```py ```py
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="./results", ... output_dir="./results",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... learning_rate=5e-5, ... learning_rate=5e-5,
... per_device_train_batch_size=16, ... per_device_train_batch_size=16,
... per_device_eval_batch_size=16, ... per_device_eval_batch_size=16,
......
...@@ -182,7 +182,7 @@ En este punto, solo quedan tres pasos: ...@@ -182,7 +182,7 @@ En este punto, solo quedan tres pasos:
```py ```py
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="./results", ... output_dir="./results",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... learning_rate=2e-5, ... learning_rate=2e-5,
... per_device_train_batch_size=16, ... per_device_train_batch_size=16,
... per_device_eval_batch_size=16, ... per_device_eval_batch_size=16,
......
...@@ -140,7 +140,7 @@ En este punto, solo faltan tres pasos: ...@@ -140,7 +140,7 @@ En este punto, solo faltan tres pasos:
```py ```py
>>> training_args = Seq2SeqTrainingArguments( >>> training_args = Seq2SeqTrainingArguments(
... output_dir="./results", ... output_dir="./results",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... learning_rate=2e-5, ... learning_rate=2e-5,
... per_device_train_batch_size=16, ... per_device_train_batch_size=16,
... per_device_eval_batch_size=16, ... per_device_eval_batch_size=16,
......
...@@ -60,7 +60,7 @@ training_args = TrainingArguments( ...@@ -60,7 +60,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=16, per_device_eval_batch_size=16,
num_train_epochs=2, num_train_epochs=2,
weight_decay=0.01, weight_decay=0.01,
evaluation_strategy="epoch", eval_strategy="epoch",
save_strategy="epoch", save_strategy="epoch",
load_best_model_at_end=True, load_best_model_at_end=True,
push_to_hub=True, push_to_hub=True,
......
...@@ -120,12 +120,12 @@ Define la función `compute` en `metric` para calcular el accuracy de tus predic ...@@ -120,12 +120,12 @@ Define la función `compute` en `metric` para calcular el accuracy de tus predic
... return metric.compute(predictions=predictions, references=labels) ... return metric.compute(predictions=predictions, references=labels)
``` ```
Si quieres controlar tus métricas de evaluación durante el fine-tuning, especifica el parámetro `evaluation_strategy` en tus argumentos de entrenamiento para que el modelo tenga en cuenta la métrica de evaluación al final de cada época: Si quieres controlar tus métricas de evaluación durante el fine-tuning, especifica el parámetro `eval_strategy` en tus argumentos de entrenamiento para que el modelo tenga en cuenta la métrica de evaluación al final de cada época:
```py ```py
>>> from transformers import TrainingArguments >>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch") >>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
``` ```
### Trainer ### Trainer
......
...@@ -167,7 +167,7 @@ Per quanto riguarda la classe `Trainer`: ...@@ -167,7 +167,7 @@ Per quanto riguarda la classe `Trainer`:
- Il metodo `is_world_master` di `Trainer` è deprecato a favore di `is_world_process_zero`. - Il metodo `is_world_master` di `Trainer` è deprecato a favore di `is_world_process_zero`.
Per quanto riguarda la classe `TrainingArguments`: Per quanto riguarda la classe `TrainingArguments`:
- L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `evaluation_strategy`. - L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `eval_strategy`.
Per quanto riguarda il modello Transfo-XL: Per quanto riguarda il modello Transfo-XL:
- L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_words_embeddings`. - L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_words_embeddings`.
......
...@@ -121,12 +121,12 @@ Richiama `compute` su `metric` per calcolare l'accuratezza delle tue previsioni. ...@@ -121,12 +121,12 @@ Richiama `compute` su `metric` per calcolare l'accuratezza delle tue previsioni.
... return metric.compute(predictions=predictions, references=labels) ... return metric.compute(predictions=predictions, references=labels)
``` ```
Se preferisci monitorare le tue metriche di valutazione durante il fine-tuning, specifica il parametro `evaluation_strategy` nei tuoi training arguments per restituire le metriche di valutazione ad ogni epoca di addestramento: Se preferisci monitorare le tue metriche di valutazione durante il fine-tuning, specifica il parametro `eval_strategy` nei tuoi training arguments per restituire le metriche di valutazione ad ogni epoca di addestramento:
```py ```py
>>> from transformers import TrainingArguments, Trainer >>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch") >>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
``` ```
### Trainer ### Trainer
......
...@@ -136,7 +136,7 @@ Tue Jan 11 08:58:05 2022 ...@@ -136,7 +136,7 @@ Tue Jan 11 08:58:05 2022
```py ```py
default_args = { default_args = {
"output_dir": "tmp", "output_dir": "tmp",
"evaluation_strategy": "steps", "eval_strategy": "steps",
"num_train_epochs": 1, "num_train_epochs": 1,
"log_level": "error", "log_level": "error",
"report_to": "none", "report_to": "none",
......
...@@ -270,7 +270,7 @@ MInDS-14 データセットのサンプリング レートは 8000kHz です ( ...@@ -270,7 +270,7 @@ MInDS-14 データセットのサンプリング レートは 8000kHz です (
... gradient_checkpointing=True, ... gradient_checkpointing=True,
... fp16=True, ... fp16=True,
... group_by_length=True, ... group_by_length=True,
... evaluation_strategy="steps", ... eval_strategy="steps",
... per_device_eval_batch_size=8, ... per_device_eval_batch_size=8,
... save_steps=1000, ... save_steps=1000,
... eval_steps=1000, ... eval_steps=1000,
......
...@@ -221,7 +221,7 @@ MInDS-14 データセットのサンプリング レートは 8000khz です ( ...@@ -221,7 +221,7 @@ MInDS-14 データセットのサンプリング レートは 8000khz です (
```py ```py
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="my_awesome_mind_model", ... output_dir="my_awesome_mind_model",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... save_strategy="epoch", ... save_strategy="epoch",
... learning_rate=3e-5, ... learning_rate=3e-5,
... per_device_train_batch_size=32, ... per_device_train_batch_size=32,
......
...@@ -403,7 +403,7 @@ end_index 18 ...@@ -403,7 +403,7 @@ end_index 18
... num_train_epochs=20, ... num_train_epochs=20,
... save_steps=200, ... save_steps=200,
... logging_steps=50, ... logging_steps=50,
... evaluation_strategy="steps", ... eval_strategy="steps",
... learning_rate=5e-5, ... learning_rate=5e-5,
... save_total_limit=2, ... save_total_limit=2,
... remove_unused_columns=False, ... remove_unused_columns=False,
......
...@@ -194,7 +194,7 @@ training_args = TrainingArguments( ...@@ -194,7 +194,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=32, per_device_eval_batch_size=32,
gradient_accumulation_steps=2, gradient_accumulation_steps=2,
save_total_limit=3, save_total_limit=3,
evaluation_strategy="steps", eval_strategy="steps",
eval_steps=50, eval_steps=50,
save_strategy="steps", save_strategy="steps",
save_steps=50, save_steps=50,
......
...@@ -308,7 +308,7 @@ food["test"].set_transform(preprocess_val) ...@@ -308,7 +308,7 @@ food["test"].set_transform(preprocess_val)
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="my_awesome_food_model", ... output_dir="my_awesome_food_model",
... remove_unused_columns=False, ... remove_unused_columns=False,
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... save_strategy="epoch", ... save_strategy="epoch",
... learning_rate=5e-5, ... learning_rate=5e-5,
... per_device_train_batch_size=16, ... per_device_train_batch_size=16,
......
...@@ -112,7 +112,7 @@ training_args = TrainingArguments( ...@@ -112,7 +112,7 @@ training_args = TrainingArguments(
fp16=True, fp16=True,
logging_dir=f"{repo_name}/logs", logging_dir=f"{repo_name}/logs",
logging_strategy="epoch", logging_strategy="epoch",
evaluation_strategy="epoch", eval_strategy="epoch",
save_strategy="epoch", save_strategy="epoch",
load_best_model_at_end=True, load_best_model_at_end=True,
metric_for_best_model="accuracy", metric_for_best_model="accuracy",
......
...@@ -246,7 +246,7 @@ Apply the `group_texts` function over the entire dataset: ...@@ -246,7 +246,7 @@ Apply the `group_texts` function over the entire dataset:
```py ```py
>>> training_args = TrainingArguments( >>> training_args = TrainingArguments(
... output_dir="my_awesome_eli5_clm-model", ... output_dir="my_awesome_eli5_clm-model",
... evaluation_strategy="epoch", ... eval_strategy="epoch",
... learning_rate=2e-5, ... learning_rate=2e-5,
... weight_decay=0.01, ... weight_decay=0.01,
... push_to_hub=True, ... push_to_hub=True,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment