"tests/models/openai/test_tokenization_openai.py" did not exist on "bc70779bf0dc7a1b59eeb65d106d1116feb4a828"
Unverified Commit 60d5f8f9 authored by Zach Mueller's avatar Zach Mueller Committed by GitHub
Browse files

🚨🚨🚨Deprecate `evaluation_strategy` to `eval_strategy`🚨🚨🚨 (#30190)

* Alias

* Note alias

* Tests and src

* Rest

* Clean

* Change typing?

* Fix tests

* Deprecation versions
parent c86d020e
......@@ -128,12 +128,12 @@ Call [`~evaluate.compute`] on `metric` to calculate the accuracy of your predict
... return metric.compute(predictions=predictions, references=labels)
```
If you'd like to monitor your evaluation metrics during fine-tuning, specify the `evaluation_strategy` parameter in your training arguments to report the evaluation metric at the end of each epoch:
If you'd like to monitor your evaluation metrics during fine-tuning, specify the `eval_strategy` parameter in your training arguments to report the evaluation metric at the end of each epoch:
```py
>>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
>>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
```
### Trainer
......
......@@ -260,7 +260,7 @@ En este punto, solo quedan tres pasos:
... gradient_checkpointing=True,
... fp16=True,
... group_by_length=True,
... evaluation_strategy="steps",
... eval_strategy="steps",
... per_device_eval_batch_size=8,
... save_steps=1000,
... eval_steps=1000,
......
......@@ -188,7 +188,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=32,
gradient_accumulation_steps=2,
save_total_limit=3,
evaluation_strategy="steps",
eval_strategy="steps",
eval_steps=50,
save_strategy="steps",
save_steps=50,
......
......@@ -143,7 +143,7 @@ Al llegar a este punto, solo quedan tres pasos:
>>> training_args = TrainingArguments(
... output_dir="./results",
... per_device_train_batch_size=16,
... evaluation_strategy="steps",
... eval_strategy="steps",
... num_train_epochs=4,
... fp16=True,
... save_steps=100,
......
......@@ -232,7 +232,7 @@ A este punto, solo faltan tres pasos:
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... learning_rate=2e-5,
... weight_decay=0.01,
... )
......@@ -338,7 +338,7 @@ A este punto, solo faltan tres pasos:
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... learning_rate=2e-5,
... num_train_epochs=3,
... weight_decay=0.01,
......
......@@ -212,7 +212,7 @@ En este punto, solo quedan tres pasos:
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... learning_rate=5e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
......
......@@ -182,7 +182,7 @@ En este punto, solo quedan tres pasos:
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... learning_rate=2e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
......
......@@ -140,7 +140,7 @@ En este punto, solo faltan tres pasos:
```py
>>> training_args = Seq2SeqTrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... learning_rate=2e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
......
......@@ -60,7 +60,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=16,
num_train_epochs=2,
weight_decay=0.01,
evaluation_strategy="epoch",
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=True,
......
......@@ -120,12 +120,12 @@ Define la función `compute` en `metric` para calcular el accuracy de tus predic
... return metric.compute(predictions=predictions, references=labels)
```
Si quieres controlar tus métricas de evaluación durante el fine-tuning, especifica el parámetro `evaluation_strategy` en tus argumentos de entrenamiento para que el modelo tenga en cuenta la métrica de evaluación al final de cada época:
Si quieres controlar tus métricas de evaluación durante el fine-tuning, especifica el parámetro `eval_strategy` en tus argumentos de entrenamiento para que el modelo tenga en cuenta la métrica de evaluación al final de cada época:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
>>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
```
### Trainer
......
......@@ -167,7 +167,7 @@ Per quanto riguarda la classe `Trainer`:
- Il metodo `is_world_master` di `Trainer` è deprecato a favore di `is_world_process_zero`.
Per quanto riguarda la classe `TrainingArguments`:
- L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `evaluation_strategy`.
- L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `eval_strategy`.
Per quanto riguarda il modello Transfo-XL:
- L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_words_embeddings`.
......
......@@ -121,12 +121,12 @@ Richiama `compute` su `metric` per calcolare l'accuratezza delle tue previsioni.
... return metric.compute(predictions=predictions, references=labels)
```
Se preferisci monitorare le tue metriche di valutazione durante il fine-tuning, specifica il parametro `evaluation_strategy` nei tuoi training arguments per restituire le metriche di valutazione ad ogni epoca di addestramento:
Se preferisci monitorare le tue metriche di valutazione durante il fine-tuning, specifica il parametro `eval_strategy` nei tuoi training arguments per restituire le metriche di valutazione ad ogni epoca di addestramento:
```py
>>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
>>> training_args = TrainingArguments(output_dir="test_trainer", eval_strategy="epoch")
```
### Trainer
......
......@@ -136,7 +136,7 @@ Tue Jan 11 08:58:05 2022
```py
default_args = {
"output_dir": "tmp",
"evaluation_strategy": "steps",
"eval_strategy": "steps",
"num_train_epochs": 1,
"log_level": "error",
"report_to": "none",
......
......@@ -270,7 +270,7 @@ MInDS-14 データセットのサンプリング レートは 8000kHz です (
... gradient_checkpointing=True,
... fp16=True,
... group_by_length=True,
... evaluation_strategy="steps",
... eval_strategy="steps",
... per_device_eval_batch_size=8,
... save_steps=1000,
... eval_steps=1000,
......
......@@ -221,7 +221,7 @@ MInDS-14 データセットのサンプリング レートは 8000khz です (
```py
>>> training_args = TrainingArguments(
... output_dir="my_awesome_mind_model",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... save_strategy="epoch",
... learning_rate=3e-5,
... per_device_train_batch_size=32,
......
......@@ -403,7 +403,7 @@ end_index 18
... num_train_epochs=20,
... save_steps=200,
... logging_steps=50,
... evaluation_strategy="steps",
... eval_strategy="steps",
... learning_rate=5e-5,
... save_total_limit=2,
... remove_unused_columns=False,
......
......@@ -194,7 +194,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=32,
gradient_accumulation_steps=2,
save_total_limit=3,
evaluation_strategy="steps",
eval_strategy="steps",
eval_steps=50,
save_strategy="steps",
save_steps=50,
......
......@@ -308,7 +308,7 @@ food["test"].set_transform(preprocess_val)
>>> training_args = TrainingArguments(
... output_dir="my_awesome_food_model",
... remove_unused_columns=False,
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... save_strategy="epoch",
... learning_rate=5e-5,
... per_device_train_batch_size=16,
......
......@@ -112,7 +112,7 @@ training_args = TrainingArguments(
fp16=True,
logging_dir=f"{repo_name}/logs",
logging_strategy="epoch",
evaluation_strategy="epoch",
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="accuracy",
......
......@@ -246,7 +246,7 @@ Apply the `group_texts` function over the entire dataset:
```py
>>> training_args = TrainingArguments(
... output_dir="my_awesome_eli5_clm-model",
... evaluation_strategy="epoch",
... eval_strategy="epoch",
... learning_rate=2e-5,
... weight_decay=0.01,
... push_to_hub=True,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment