"vscode:/vscode.git/clone" did not exist on "d59034ff6fb787d48c5dafcb09a5cea561ac3273"
Unverified Commit 5f3c57fc authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Check the repo consistency in model templates test (#15141)

* Check the repo consistency in model templates test

* Fix doc template

* Fix docstrings

* Fix last docstring
parent 96881729
...@@ -61,7 +61,7 @@ jobs: ...@@ -61,7 +61,7 @@ jobs:
- name: Run style changes - name: Run style changes
run: | run: |
git fetch origin master:master git fetch origin master:master
make style && make quality make style && make quality && make repo-consistency
- name: Failure short reports - name: Failure short reports
if: ${{ always() }} if: ${{ always() }}
......
...@@ -2119,8 +2119,9 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode ...@@ -2119,8 +2119,9 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode
r""" r"""
Returns: Returns:
Example:: Example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration >>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}') >>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
...@@ -2129,7 +2130,7 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode ...@@ -2129,7 +2130,7 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode
>>> text = "My friends are cool but they eat too many carbs." >>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors='np') >>> inputs = tokenizer(text, max_length=1024, return_tensors='np')
>>> encoder_outputs = model.encode(**inputs) >>> encoder_outputs = model.encode(**inputs)
""" ```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -2184,8 +2185,9 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode ...@@ -2184,8 +2185,9 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode
r""" r"""
Returns: Returns:
Example:: Example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration >>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}') >>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
...@@ -2200,7 +2202,7 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode ...@@ -2200,7 +2202,7 @@ class Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel(FlaxPreTrainedMode
>>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state >>> last_decoder_hidden_states = outputs.last_hidden_state
""" ```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
...@@ -2450,8 +2452,9 @@ class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{coo ...@@ -2450,8 +2452,9 @@ class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{coo
r""" r"""
Returns: Returns:
Example:: Example:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration >>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}') >>> model = Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
...@@ -2466,7 +2469,7 @@ class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{coo ...@@ -2466,7 +2469,7 @@ class Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(Flax{{coo
>>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits >>> logits = outputs.logits
""" ```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......
...@@ -878,7 +878,7 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel): ...@@ -878,7 +878,7 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel):
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r""" {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args: Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See Indices can be obtained using [`BertTokenizer`]. See
...@@ -925,7 +925,7 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel): ...@@ -925,7 +925,7 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel):
return_dict (`bool`, *optional*): return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This
argument can be used in eager mode, in graph mode the value will always be set to True. argument can be used in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``): training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). behaviors between training and evaluation).
""" """
...@@ -2611,8 +2611,11 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer): ...@@ -2611,8 +2611,11 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
If `past_key_values` are used, the user can optionally input only the last If `past_key_values` are used, the user can optionally input only the last
`decoder_input_ids` (those that don't have their past key value states given to this model) of `decoder_input_ids` (those that don't have their past key value states given to this model) of
shape `(batch_size, 1)` instead of all ``decoder_input_ids``` of shape `(batch_size, shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size,
sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices
into associated vectors than the model's internal embedding lookup matrix. into associated vectors than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*): output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under Whether or not to return the attentions tensors of all attention layers. See `attentions` under
...@@ -3085,8 +3088,9 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec ...@@ -3085,8 +3088,9 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
""" """
Returns: Returns:
Examples:: Examples:
```python
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration >>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> import tensorflow as tf >>> import tensorflow as tf
>>> mname = '{{cookiecutter.checkpoint_identifier}}' >>> mname = '{{cookiecutter.checkpoint_identifier}}'
...@@ -3097,7 +3101,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec ...@@ -3097,7 +3101,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
>>> logits = model(inputs=batch.input_ids).logits >>> logits = model(inputs=batch.input_ids).logits
>>> probs = tf.nn.softmax(logits[0]) >>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token >>> # probs[5] is associated with the mask token
""" ```"""
inputs = input_processing( inputs = input_processing(
func=self.call, func=self.call,
config=self.config, config=self.config,
......
...@@ -127,7 +127,7 @@ This model was contributed by [INSERT YOUR HF USERNAME HERE](<https://huggingfac ...@@ -127,7 +127,7 @@ This model was contributed by [INSERT YOUR HF USERNAME HERE](<https://huggingfac
- call - call
## TF{{cookiecutter.camelcase_modelname}}ForCausalLM[[autodoc]] ## TF{{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForCausalLM
- call - call
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment