Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5e8c8eb5
"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "ab0ddc99e853c974949d823dbfaa732202696f3e"
Unverified
Commit
5e8c8eb5
authored
Feb 22, 2023
by
Aaron Gokaslan
Committed by
GitHub
Feb 22, 2023
Browse files
Apply ruff flake8-comprehensions (#21694)
parent
df06fb1f
Changes
230
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
105 additions
and
105 deletions
+105
-105
examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py
...h_projects/seq2seq-distillation/_test_seq2seq_examples.py
+49
-49
examples/research_projects/seq2seq-distillation/_test_seq2seq_examples_multi_gpu.py
.../seq2seq-distillation/_test_seq2seq_examples_multi_gpu.py
+20
-20
examples/research_projects/seq2seq-distillation/finetune.py
examples/research_projects/seq2seq-distillation/finetune.py
+6
-6
examples/research_projects/seq2seq-distillation/make_student.py
...es/research_projects/seq2seq-distillation/make_student.py
+5
-5
examples/research_projects/seq2seq-distillation/run_eval.py
examples/research_projects/seq2seq-distillation/run_eval.py
+1
-1
examples/research_projects/seq2seq-distillation/utils.py
examples/research_projects/seq2seq-distillation/utils.py
+1
-1
examples/research_projects/tapex/wikisql_utils.py
examples/research_projects/tapex/wikisql_utils.py
+2
-2
examples/research_projects/visual_bert/extracting_data.py
examples/research_projects/visual_bert/extracting_data.py
+1
-1
examples/research_projects/visual_bert/modeling_frcnn.py
examples/research_projects/visual_bert/modeling_frcnn.py
+1
-1
examples/research_projects/vqgan-clip/VQGAN_CLIP.py
examples/research_projects/vqgan-clip/VQGAN_CLIP.py
+2
-2
examples/research_projects/vqgan-clip/loaders.py
examples/research_projects/vqgan-clip/loaders.py
+1
-1
examples/research_projects/wav2vec2/test_wav2vec2_deepspeed.py
...les/research_projects/wav2vec2/test_wav2vec2_deepspeed.py
+1
-1
examples/research_projects/xtreme-s/run_xtreme_s.py
examples/research_projects/xtreme-s/run_xtreme_s.py
+1
-1
examples/tensorflow/benchmarking/plot_csv_file.py
examples/tensorflow/benchmarking/plot_csv_file.py
+3
-3
examples/tensorflow/image-classification/run_image_classification.py
...nsorflow/image-classification/run_image_classification.py
+1
-1
examples/tensorflow/language-modeling/run_clm.py
examples/tensorflow/language-modeling/run_clm.py
+1
-1
examples/tensorflow/language-modeling/run_mlm.py
examples/tensorflow/language-modeling/run_mlm.py
+1
-1
examples/tensorflow/question-answering/run_qa.py
examples/tensorflow/question-answering/run_qa.py
+1
-1
examples/tensorflow/text-classification/run_glue.py
examples/tensorflow/text-classification/run_glue.py
+3
-3
examples/tensorflow/text-classification/run_text_classification.py
...tensorflow/text-classification/run_text_classification.py
+4
-4
No files found.
examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py
View file @
5e8c8eb5
...
@@ -145,18 +145,18 @@ class TestSummarizationDistiller(TestCasePlus):
...
@@ -145,18 +145,18 @@ class TestSummarizationDistiller(TestCasePlus):
assert
not
failures
,
f
"The following models could not be loaded through AutoConfig:
{
failures
}
"
assert
not
failures
,
f
"The following models could not be loaded through AutoConfig:
{
failures
}
"
def
test_distill_no_teacher
(
self
):
def
test_distill_no_teacher
(
self
):
updates
=
dict
(
student_encoder_layers
=
2
,
student_decoder_layers
=
1
,
no_teacher
=
True
)
updates
=
{
"
student_encoder_layers
"
:
2
,
"
student_decoder_layers
"
:
1
,
"
no_teacher
"
:
True
}
self
.
_test_distiller_cli
(
updates
)
self
.
_test_distiller_cli
(
updates
)
def
test_distill_checkpointing_with_teacher
(
self
):
def
test_distill_checkpointing_with_teacher
(
self
):
updates
=
dict
(
updates
=
{
student_encoder_layers
=
2
,
"
student_encoder_layers
"
:
2
,
student_decoder_layers
=
1
,
"
student_decoder_layers
"
:
1
,
max_epochs
=
4
,
"
max_epochs
"
:
4
,
val_check_interval
=
0.25
,
"
val_check_interval
"
:
0.25
,
alpha_hid
=
2.0
,
"
alpha_hid
"
:
2.0
,
model_name_or_path
=
"IGNORE_THIS_IT_DOESNT_GET_USED"
,
"
model_name_or_path
"
:
"IGNORE_THIS_IT_DOESNT_GET_USED"
,
)
}
model
=
self
.
_test_distiller_cli
(
updates
,
check_contents
=
False
)
model
=
self
.
_test_distiller_cli
(
updates
,
check_contents
=
False
)
ckpts
=
list
(
Path
(
model
.
output_dir
).
glob
(
"*.ckpt"
))
ckpts
=
list
(
Path
(
model
.
output_dir
).
glob
(
"*.ckpt"
))
...
@@ -193,19 +193,19 @@ class TestSummarizationDistiller(TestCasePlus):
...
@@ -193,19 +193,19 @@ class TestSummarizationDistiller(TestCasePlus):
self
.
assertEqual
(
nll_loss
,
model_computed_loss
)
self
.
assertEqual
(
nll_loss
,
model_computed_loss
)
def
test_distill_mbart
(
self
):
def
test_distill_mbart
(
self
):
updates
=
dict
(
updates
=
{
student_encoder_layers
=
2
,
"
student_encoder_layers
"
:
2
,
student_decoder_layers
=
1
,
"
student_decoder_layers
"
:
1
,
num_train_epochs
=
4
,
"
num_train_epochs
"
:
4
,
val_check_interval
=
0.25
,
"
val_check_interval
"
:
0.25
,
alpha_hid
=
2.0
,
"
alpha_hid
"
:
2.0
,
task
=
"translation"
,
"
task
"
:
"translation"
,
model_name_or_path
=
"IGNORE_THIS_IT_DOESNT_GET_USED"
,
"
model_name_or_path
"
:
"IGNORE_THIS_IT_DOESNT_GET_USED"
,
tokenizer_name
=
MBART_TINY
,
"
tokenizer_name
"
:
MBART_TINY
,
teacher
=
MBART_TINY
,
"
teacher
"
:
MBART_TINY
,
src_lang
=
"en_XX"
,
"
src_lang
"
:
"en_XX"
,
tgt_lang
=
"ro_RO"
,
"
tgt_lang
"
:
"ro_RO"
,
)
}
model
=
self
.
_test_distiller_cli
(
updates
,
check_contents
=
False
)
model
=
self
.
_test_distiller_cli
(
updates
,
check_contents
=
False
)
assert
model
.
model
.
config
.
model_type
==
"mbart"
assert
model
.
model
.
config
.
model_type
==
"mbart"
...
@@ -217,39 +217,39 @@ class TestSummarizationDistiller(TestCasePlus):
...
@@ -217,39 +217,39 @@ class TestSummarizationDistiller(TestCasePlus):
self
.
assertEqual
(
len
(
transformer_ckpts
),
2
)
self
.
assertEqual
(
len
(
transformer_ckpts
),
2
)
def
test_distill_t5
(
self
):
def
test_distill_t5
(
self
):
updates
=
dict
(
updates
=
{
student_encoder_layers
=
1
,
"
student_encoder_layers
"
:
1
,
student_decoder_layers
=
1
,
"
student_decoder_layers
"
:
1
,
alpha_hid
=
2.0
,
"
alpha_hid
"
:
2.0
,
teacher
=
T5_TINY
,
"
teacher
"
:
T5_TINY
,
model_name_or_path
=
T5_TINY
,
"
model_name_or_path
"
:
T5_TINY
,
tokenizer_name
=
T5_TINY
,
"
tokenizer_name
"
:
T5_TINY
,
)
}
self
.
_test_distiller_cli
(
updates
)
self
.
_test_distiller_cli
(
updates
)
def
test_distill_different_base_models
(
self
):
def
test_distill_different_base_models
(
self
):
updates
=
dict
(
updates
=
{
teacher
=
T5_TINY
,
"
teacher
"
:
T5_TINY
,
student
=
T5_TINIER
,
"
student
"
:
T5_TINIER
,
model_name_or_path
=
T5_TINIER
,
"
model_name_or_path
"
:
T5_TINIER
,
tokenizer_name
=
T5_TINIER
,
"
tokenizer_name
"
:
T5_TINIER
,
)
}
self
.
_test_distiller_cli
(
updates
)
self
.
_test_distiller_cli
(
updates
)
def
_test_distiller_cli
(
self
,
updates
,
check_contents
=
True
):
def
_test_distiller_cli
(
self
,
updates
,
check_contents
=
True
):
default_updates
=
dict
(
default_updates
=
{
label_smoothing
=
0.0
,
"
label_smoothing
"
:
0.0
,
early_stopping_patience
=
-
1
,
"
early_stopping_patience
"
:
-
1
,
train_batch_size
=
1
,
"
train_batch_size
"
:
1
,
eval_batch_size
=
2
,
"
eval_batch_size
"
:
2
,
max_epochs
=
2
,
"
max_epochs
"
:
2
,
alpha_mlm
=
0.2
,
"
alpha_mlm
"
:
0.2
,
alpha_ce
=
0.8
,
"
alpha_ce
"
:
0.8
,
do_predict
=
True
,
"
do_predict
"
:
True
,
model_name_or_path
=
"sshleifer/tinier_bart"
,
"
model_name_or_path
"
:
"sshleifer/tinier_bart"
,
teacher
=
CHEAP_ARGS
[
"model_name_or_path"
],
"
teacher
"
:
CHEAP_ARGS
[
"model_name_or_path"
],
val_check_interval
=
0.5
,
"
val_check_interval
"
:
0.5
,
)
}
default_updates
.
update
(
updates
)
default_updates
.
update
(
updates
)
args_d
:
dict
=
CHEAP_ARGS
.
copy
()
args_d
:
dict
=
CHEAP_ARGS
.
copy
()
tmp_dir
=
make_test_data_dir
(
tmp_dir
=
self
.
get_auto_remove_tmp_dir
())
tmp_dir
=
make_test_data_dir
(
tmp_dir
=
self
.
get_auto_remove_tmp_dir
())
...
...
examples/research_projects/seq2seq-distillation/_test_seq2seq_examples_multi_gpu.py
View file @
5e8c8eb5
...
@@ -98,29 +98,29 @@ class TestSummarizationDistillerMultiGPU(TestCasePlus):
...
@@ -98,29 +98,29 @@ class TestSummarizationDistillerMultiGPU(TestCasePlus):
@
require_torch_multi_gpu
@
require_torch_multi_gpu
def
test_multi_gpu
(
self
):
def
test_multi_gpu
(
self
):
updates
=
dict
(
updates
=
{
no_teacher
=
True
,
"
no_teacher
"
:
True
,
freeze_encoder
=
True
,
"
freeze_encoder
"
:
True
,
gpus
=
2
,
"
gpus
"
:
2
,
overwrite_output_dir
=
True
,
"
overwrite_output_dir
"
:
True
,
sortish_sampler
=
True
,
"
sortish_sampler
"
:
True
,
)
}
self
.
_test_distiller_cli_fork
(
updates
,
check_contents
=
False
)
self
.
_test_distiller_cli_fork
(
updates
,
check_contents
=
False
)
def
_test_distiller_cli_fork
(
self
,
updates
,
check_contents
=
True
):
def
_test_distiller_cli_fork
(
self
,
updates
,
check_contents
=
True
):
default_updates
=
dict
(
default_updates
=
{
label_smoothing
=
0.0
,
"
label_smoothing
"
:
0.0
,
early_stopping_patience
=
-
1
,
"
early_stopping_patience
"
:
-
1
,
train_batch_size
=
1
,
"
train_batch_size
"
:
1
,
eval_batch_size
=
2
,
"
eval_batch_size
"
:
2
,
max_epochs
=
2
,
"
max_epochs
"
:
2
,
alpha_mlm
=
0.2
,
"
alpha_mlm
"
:
0.2
,
alpha_ce
=
0.8
,
"
alpha_ce
"
:
0.8
,
do_predict
=
True
,
"
do_predict
"
:
True
,
model_name_or_path
=
"sshleifer/tinier_bart"
,
"
model_name_or_path
"
:
"sshleifer/tinier_bart"
,
teacher
=
CHEAP_ARGS
[
"model_name_or_path"
],
"
teacher
"
:
CHEAP_ARGS
[
"model_name_or_path"
],
val_check_interval
=
0.5
,
"
val_check_interval
"
:
0.5
,
)
}
default_updates
.
update
(
updates
)
default_updates
.
update
(
updates
)
args_d
:
dict
=
CHEAP_ARGS
.
copy
()
args_d
:
dict
=
CHEAP_ARGS
.
copy
()
tmp_dir
=
make_test_data_dir
(
tmp_dir
=
self
.
get_auto_remove_tmp_dir
())
tmp_dir
=
make_test_data_dir
(
tmp_dir
=
self
.
get_auto_remove_tmp_dir
())
...
...
examples/research_projects/seq2seq-distillation/finetune.py
View file @
5e8c8eb5
...
@@ -74,11 +74,11 @@ class SummarizationModule(BaseTransformer):
...
@@ -74,11 +74,11 @@ class SummarizationModule(BaseTransformer):
self
.
model_type
=
self
.
config
.
model_type
self
.
model_type
=
self
.
config
.
model_type
self
.
vocab_size
=
self
.
config
.
tgt_vocab_size
if
self
.
model_type
==
"fsmt"
else
self
.
config
.
vocab_size
self
.
vocab_size
=
self
.
config
.
tgt_vocab_size
if
self
.
model_type
==
"fsmt"
else
self
.
config
.
vocab_size
self
.
dataset_kwargs
:
dict
=
dict
(
self
.
dataset_kwargs
:
dict
=
{
data_dir
=
self
.
hparams
.
data_dir
,
"
data_dir
"
:
self
.
hparams
.
data_dir
,
max_source_length
=
self
.
hparams
.
max_source_length
,
"
max_source_length
"
:
self
.
hparams
.
max_source_length
,
prefix
=
self
.
model
.
config
.
prefix
or
""
,
"
prefix
"
:
self
.
model
.
config
.
prefix
or
""
,
)
}
n_observations_per_split
=
{
n_observations_per_split
=
{
"train"
:
self
.
hparams
.
n_train
,
"train"
:
self
.
hparams
.
n_train
,
"val"
:
self
.
hparams
.
n_val
,
"val"
:
self
.
hparams
.
n_val
,
...
@@ -433,7 +433,7 @@ def main(args, model=None) -> SummarizationModule:
...
@@ -433,7 +433,7 @@ def main(args, model=None) -> SummarizationModule:
return
model
return
model
model
.
hparams
.
test_checkpoint
=
""
model
.
hparams
.
test_checkpoint
=
""
checkpoints
=
list
(
sorted
(
glob
.
glob
(
os
.
path
.
join
(
args
.
output_dir
,
"*.ckpt"
),
recursive
=
True
))
)
checkpoints
=
sorted
(
glob
.
glob
(
os
.
path
.
join
(
args
.
output_dir
,
"*.ckpt"
),
recursive
=
True
))
if
checkpoints
:
if
checkpoints
:
model
.
hparams
.
test_checkpoint
=
checkpoints
[
-
1
]
model
.
hparams
.
test_checkpoint
=
checkpoints
[
-
1
]
trainer
.
resume_from_checkpoint
=
checkpoints
[
-
1
]
trainer
.
resume_from_checkpoint
=
checkpoints
[
-
1
]
...
...
examples/research_projects/seq2seq-distillation/make_student.py
View file @
5e8c8eb5
...
@@ -171,11 +171,11 @@ def create_student_by_copying_alternating_layers(
...
@@ -171,11 +171,11 @@ def create_student_by_copying_alternating_layers(
logger
.
info
(
logger
.
info
(
f
"Copied encoder layers
{
e_layers_to_copy
}
and decoder layers
{
d_layers_to_copy
}
. Saving them to
{
save_path
}
"
f
"Copied encoder layers
{
e_layers_to_copy
}
and decoder layers
{
d_layers_to_copy
}
. Saving them to
{
save_path
}
"
)
)
student
.
config
.
init_metadata
=
dict
(
student
.
config
.
init_metadata
=
{
teacher_type
=
teacher
.
config
.
model_type
,
"
teacher_type
"
:
teacher
.
config
.
model_type
,
copied_encoder_layers
=
e_layers_to_copy
,
"
copied_encoder_layers
"
:
e_layers_to_copy
,
copied_decoder_layers
=
d_layers_to_copy
,
"
copied_decoder_layers
"
:
d_layers_to_copy
,
)
}
student
.
save_pretrained
(
save_path
)
student
.
save_pretrained
(
save_path
)
# Save information about copying for easier reproducibility
# Save information about copying for easier reproducibility
...
...
examples/research_projects/seq2seq-distillation/run_eval.py
View file @
5e8c8eb5
...
@@ -63,7 +63,7 @@ def generate_summaries_or_translations(
...
@@ -63,7 +63,7 @@ def generate_summaries_or_translations(
fout
.
close
()
fout
.
close
()
runtime
=
int
(
time
.
time
()
-
start_time
)
# seconds
runtime
=
int
(
time
.
time
()
-
start_time
)
# seconds
n_obs
=
len
(
examples
)
n_obs
=
len
(
examples
)
return
dict
(
n_obs
=
n_obs
,
runtime
=
runtime
,
seconds_per_sample
=
round
(
runtime
/
n_obs
,
4
)
)
return
{
"
n_obs
"
:
n_obs
,
"
runtime
"
:
runtime
,
"
seconds_per_sample
"
:
round
(
runtime
/
n_obs
,
4
)
}
def
datetime_now
():
def
datetime_now
():
...
...
examples/research_projects/seq2seq-distillation/utils.py
View file @
5e8c8eb5
...
@@ -437,7 +437,7 @@ def pickle_save(obj, path):
...
@@ -437,7 +437,7 @@ def pickle_save(obj, path):
def
flatten_list
(
summary_ids
:
List
[
List
]):
def
flatten_list
(
summary_ids
:
List
[
List
]):
return
[
x
for
x
in
itertools
.
chain
.
from_iterable
(
summary_ids
)
]
return
list
(
itertools
.
chain
.
from_iterable
(
summary_ids
)
)
def
save_git_info
(
folder_path
:
str
)
->
None
:
def
save_git_info
(
folder_path
:
str
)
->
None
:
...
...
examples/research_projects/tapex/wikisql_utils.py
View file @
5e8c8eb5
...
@@ -30,7 +30,7 @@ EMPTY_ANSWER_AGG = "none"
...
@@ -30,7 +30,7 @@ EMPTY_ANSWER_AGG = "none"
def
_split_thousands
(
delimiter
,
value
):
def
_split_thousands
(
delimiter
,
value
):
split
=
value
.
split
(
delimiter
)
split
=
value
.
split
(
delimiter
)
return
len
(
split
)
>
1
and
any
(
map
(
lambda
x
:
len
(
x
)
==
3
,
split
))
return
len
(
split
)
>
1
and
any
(
(
len
(
x
)
==
3
for
x
in
split
))
def
convert_to_float
(
value
):
def
convert_to_float
(
value
):
...
@@ -123,7 +123,7 @@ _TOKENIZER = re.compile(r"\w+|[^\w\s]+", re.UNICODE | re.MULTILINE | re.DOTALL)
...
@@ -123,7 +123,7 @@ _TOKENIZER = re.compile(r"\w+|[^\w\s]+", re.UNICODE | re.MULTILINE | re.DOTALL)
def
_normalize_for_match
(
x
):
def
_normalize_for_match
(
x
):
return
[
t
for
t
in
_TOKENIZER
.
findall
(
x
.
lower
())
]
return
list
(
_TOKENIZER
.
findall
(
x
.
lower
())
)
def
_compare
(
operator
,
src
,
tgt
):
def
_compare
(
operator
,
src
,
tgt
):
...
...
examples/research_projects/visual_bert/extracting_data.py
View file @
5e8c8eb5
...
@@ -61,7 +61,7 @@ class Extract:
...
@@ -61,7 +61,7 @@ class Extract:
assert
outputfile
is
not
None
and
not
os
.
path
.
isfile
(
outputfile
),
f
"
{
outputfile
}
"
assert
outputfile
is
not
None
and
not
os
.
path
.
isfile
(
outputfile
),
f
"
{
outputfile
}
"
if
subset_list
is
not
None
:
if
subset_list
is
not
None
:
with
open
(
os
.
path
.
realpath
(
subset_list
))
as
f
:
with
open
(
os
.
path
.
realpath
(
subset_list
))
as
f
:
self
.
subset_list
=
set
(
map
(
lambda
x
:
self
.
_vqa_file_split
()[
0
]
,
tryload
(
f
)
))
self
.
subset_list
=
{
self
.
_vqa_file_split
()[
0
]
for
x
in
tryload
(
f
)
}
else
:
else
:
self
.
subset_list
=
None
self
.
subset_list
=
None
...
...
examples/research_projects/visual_bert/modeling_frcnn.py
View file @
5e8c8eb5
...
@@ -1095,7 +1095,7 @@ class ROIPooler(nn.Module):
...
@@ -1095,7 +1095,7 @@ class ROIPooler(nn.Module):
Returns:
Returns:
A tensor of shape(N*B, Channels, output_size, output_size)
A tensor of shape(N*B, Channels, output_size, output_size)
"""
"""
x
=
[
v
for
v
in
feature_maps
.
values
()
]
x
=
list
(
feature_maps
.
values
()
)
num_level_assignments
=
len
(
self
.
level_poolers
)
num_level_assignments
=
len
(
self
.
level_poolers
)
assert
len
(
x
)
==
num_level_assignments
and
len
(
boxes
)
==
x
[
0
].
size
(
0
)
assert
len
(
x
)
==
num_level_assignments
and
len
(
boxes
)
==
x
[
0
].
size
(
0
)
...
...
examples/research_projects/vqgan-clip/VQGAN_CLIP.py
View file @
5e8c8eb5
...
@@ -99,7 +99,7 @@ class VQGAN_CLIP(nn.Module):
...
@@ -99,7 +99,7 @@ class VQGAN_CLIP(nn.Module):
output_path
=
"./animation.gif"
output_path
=
"./animation.gif"
if
input_path
is
None
:
if
input_path
is
None
:
input_path
=
self
.
save_path
input_path
=
self
.
save_path
paths
=
list
(
sorted
(
glob
(
input_path
+
"/*"
))
)
paths
=
sorted
(
glob
(
input_path
+
"/*"
))
if
not
len
(
paths
):
if
not
len
(
paths
):
raise
ValueError
(
raise
ValueError
(
"No images found in save path, aborting (did you pass save_intermediate=True to the generate"
"No images found in save path, aborting (did you pass save_intermediate=True to the generate"
...
@@ -178,7 +178,7 @@ class VQGAN_CLIP(nn.Module):
...
@@ -178,7 +178,7 @@ class VQGAN_CLIP(nn.Module):
wandb
.
init
(
reinit
=
True
,
project
=
"face-editor"
)
wandb
.
init
(
reinit
=
True
,
project
=
"face-editor"
)
wandb
.
config
.
update
({
"Positive Prompts"
:
positive_prompts
})
wandb
.
config
.
update
({
"Positive Prompts"
:
positive_prompts
})
wandb
.
config
.
update
({
"Negative Prompts"
:
negative_prompts
})
wandb
.
config
.
update
({
"Negative Prompts"
:
negative_prompts
})
wandb
.
config
.
update
(
dict
(
lr
=
self
.
lr
,
iterations
=
self
.
iterations
)
)
wandb
.
config
.
update
(
{
"lr"
:
self
.
lr
,
"
iterations
"
:
self
.
iterations
}
)
if
image_path
:
if
image_path
:
image
=
Image
.
open
(
image_path
)
image
=
Image
.
open
(
image_path
)
image
=
image
.
resize
((
256
,
256
))
image
=
image
.
resize
((
256
,
256
))
...
...
examples/research_projects/vqgan-clip/loaders.py
View file @
5e8c8eb5
...
@@ -47,7 +47,7 @@ def get_obj_from_str(string, reload=False):
...
@@ -47,7 +47,7 @@ def get_obj_from_str(string, reload=False):
def
instantiate_from_config
(
config
):
def
instantiate_from_config
(
config
):
if
"target"
not
in
config
:
if
"target"
not
in
config
:
raise
KeyError
(
"Expected key `target` to instantiate."
)
raise
KeyError
(
"Expected key `target` to instantiate."
)
return
get_obj_from_str
(
config
[
"target"
])(
**
config
.
get
(
"params"
,
dict
()
))
return
get_obj_from_str
(
config
[
"target"
])(
**
config
.
get
(
"params"
,
{}
))
def
load_model_from_config
(
config
,
sd
,
gpu
=
True
,
eval_mode
=
True
):
def
load_model_from_config
(
config
,
sd
,
gpu
=
True
,
eval_mode
=
True
):
...
...
examples/research_projects/wav2vec2/test_wav2vec2_deepspeed.py
View file @
5e8c8eb5
...
@@ -51,7 +51,7 @@ from transformers.trainer_utils import set_seed # noqa
...
@@ -51,7 +51,7 @@ from transformers.trainer_utils import set_seed # noqa
set_seed
(
42
)
set_seed
(
42
)
models
=
dict
(
base
=
"patrickvonplaten/wav2vec2_tiny_random"
,
robust
=
"patrickvonplaten/wav2vec2_tiny_random_robust"
)
models
=
{
"
base
"
:
"patrickvonplaten/wav2vec2_tiny_random"
,
"
robust
"
:
"patrickvonplaten/wav2vec2_tiny_random_robust"
}
ZERO2
=
"zero2"
ZERO2
=
"zero2"
ZERO3
=
"zero3"
ZERO3
=
"zero3"
...
...
examples/research_projects/xtreme-s/run_xtreme_s.py
View file @
5e8c8eb5
...
@@ -400,7 +400,7 @@ def create_vocabulary_from_data(
...
@@ -400,7 +400,7 @@ def create_vocabulary_from_data(
|
(
set
(
vocabs
[
"predict"
][
"vocab"
][
0
])
if
"predict"
in
vocabs
else
set
())
|
(
set
(
vocabs
[
"predict"
][
"vocab"
][
0
])
if
"predict"
in
vocabs
else
set
())
)
)
vocab_dict
=
{
v
:
k
for
k
,
v
in
enumerate
(
sorted
(
list
(
vocab_set
))
)
}
vocab_dict
=
{
v
:
k
for
k
,
v
in
enumerate
(
sorted
(
vocab_set
))}
# replace white space with delimiter token
# replace white space with delimiter token
if
word_delimiter_token
is
not
None
:
if
word_delimiter_token
is
not
None
:
...
...
examples/tensorflow/benchmarking/plot_csv_file.py
View file @
5e8c8eb5
...
@@ -83,7 +83,7 @@ def can_convert_to_float(string):
...
@@ -83,7 +83,7 @@ def can_convert_to_float(string):
class
Plot
:
class
Plot
:
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
args
=
args
self
.
result_dict
=
defaultdict
(
lambda
:
dict
(
bsz
=
[],
seq_len
=
[],
result
=
{}
)
)
self
.
result_dict
=
defaultdict
(
lambda
:
{
"bsz"
:
[],
"
seq_len
"
:
[],
"
result
"
:
{}
}
)
with
open
(
self
.
args
.
csv_file
,
newline
=
""
)
as
csv_file
:
with
open
(
self
.
args
.
csv_file
,
newline
=
""
)
as
csv_file
:
reader
=
csv
.
DictReader
(
csv_file
)
reader
=
csv
.
DictReader
(
csv_file
)
...
@@ -116,8 +116,8 @@ class Plot:
...
@@ -116,8 +116,8 @@ class Plot:
axis
.
set_major_formatter
(
ScalarFormatter
())
axis
.
set_major_formatter
(
ScalarFormatter
())
for
model_name_idx
,
model_name
in
enumerate
(
self
.
result_dict
.
keys
()):
for
model_name_idx
,
model_name
in
enumerate
(
self
.
result_dict
.
keys
()):
batch_sizes
=
sorted
(
list
(
set
(
self
.
result_dict
[
model_name
][
"bsz"
]))
)
batch_sizes
=
sorted
(
set
(
self
.
result_dict
[
model_name
][
"bsz"
]))
sequence_lengths
=
sorted
(
list
(
set
(
self
.
result_dict
[
model_name
][
"seq_len"
]))
)
sequence_lengths
=
sorted
(
set
(
self
.
result_dict
[
model_name
][
"seq_len"
]))
results
=
self
.
result_dict
[
model_name
][
"result"
]
results
=
self
.
result_dict
[
model_name
][
"result"
]
(
x_axis_array
,
inner_loop_array
)
=
(
(
x_axis_array
,
inner_loop_array
)
=
(
...
...
examples/tensorflow/image-classification/run_image_classification.py
View file @
5e8c8eb5
...
@@ -300,7 +300,7 @@ def main():
...
@@ -300,7 +300,7 @@ def main():
# Prepare label mappings.
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
# We'll include these in the model's config to get human readable labels in the Inference API.
labels
=
dataset
[
"train"
].
features
[
"labels"
].
names
labels
=
dataset
[
"train"
].
features
[
"labels"
].
names
label2id
,
id2label
=
dict
(),
dict
()
label2id
,
id2label
=
{},
{}
for
i
,
label
in
enumerate
(
labels
):
for
i
,
label
in
enumerate
(
labels
):
label2id
[
label
]
=
str
(
i
)
label2id
[
label
]
=
str
(
i
)
id2label
[
str
(
i
)]
=
label
id2label
[
str
(
i
)]
=
label
...
...
examples/tensorflow/language-modeling/run_clm.py
View file @
5e8c8eb5
...
@@ -600,7 +600,7 @@ def main():
...
@@ -600,7 +600,7 @@ def main():
if
training_args
.
output_dir
is
not
None
:
if
training_args
.
output_dir
is
not
None
:
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"all_results.json"
)
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"all_results.json"
)
results_dict
=
dict
()
results_dict
=
{}
results_dict
[
"train_loss"
]
=
train_loss
results_dict
[
"train_loss"
]
=
train_loss
results_dict
[
"train_perplexity"
]
=
train_perplexity
results_dict
[
"train_perplexity"
]
=
train_perplexity
results_dict
[
"eval_loss"
]
=
validation_loss
results_dict
[
"eval_loss"
]
=
validation_loss
...
...
examples/tensorflow/language-modeling/run_mlm.py
View file @
5e8c8eb5
...
@@ -623,7 +623,7 @@ def main():
...
@@ -623,7 +623,7 @@ def main():
if
training_args
.
output_dir
is
not
None
:
if
training_args
.
output_dir
is
not
None
:
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"all_results.json"
)
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"all_results.json"
)
results_dict
=
dict
()
results_dict
=
{}
results_dict
[
"train_loss"
]
=
train_loss
results_dict
[
"train_loss"
]
=
train_loss
results_dict
[
"train_perplexity"
]
=
train_perplexity
results_dict
[
"train_perplexity"
]
=
train_perplexity
results_dict
[
"eval_loss"
]
=
validation_loss
results_dict
[
"eval_loss"
]
=
validation_loss
...
...
examples/tensorflow/question-answering/run_qa.py
View file @
5e8c8eb5
...
@@ -464,7 +464,7 @@ def main():
...
@@ -464,7 +464,7 @@ def main():
return
tokenized_examples
return
tokenized_examples
processed_datasets
=
dict
()
processed_datasets
=
{}
if
training_args
.
do_train
:
if
training_args
.
do_train
:
if
"train"
not
in
datasets
:
if
"train"
not
in
datasets
:
raise
ValueError
(
"--do_train requires a train dataset"
)
raise
ValueError
(
"--do_train requires a train dataset"
)
...
...
examples/tensorflow/text-classification/run_glue.py
View file @
5e8c8eb5
...
@@ -310,12 +310,12 @@ def main():
...
@@ -310,12 +310,12 @@ def main():
if
config
.
label2id
!=
PretrainedConfig
(
num_labels
=
num_labels
).
label2id
and
not
is_regression
:
if
config
.
label2id
!=
PretrainedConfig
(
num_labels
=
num_labels
).
label2id
and
not
is_regression
:
# Some have all caps in their config, some don't.
# Some have all caps in their config, some don't.
label_name_to_id
=
{
k
.
lower
():
v
for
k
,
v
in
config
.
label2id
.
items
()}
label_name_to_id
=
{
k
.
lower
():
v
for
k
,
v
in
config
.
label2id
.
items
()}
if
list
(
sorted
(
label_name_to_id
.
keys
())
)
==
list
(
sorted
(
label_list
)
)
:
if
sorted
(
label_name_to_id
.
keys
())
==
sorted
(
label_list
):
label_to_id
=
{
i
:
int
(
label_name_to_id
[
label_list
[
i
]])
for
i
in
range
(
num_labels
)}
label_to_id
=
{
i
:
int
(
label_name_to_id
[
label_list
[
i
]])
for
i
in
range
(
num_labels
)}
else
:
else
:
logger
.
warning
(
logger
.
warning
(
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
f
"model labels:
{
list
(
sorted
(
label_name_to_id
.
keys
())
)
}
, dataset labels:
{
list
(
sorted
(
label_list
)
)
}
."
f
"model labels:
{
sorted
(
label_name_to_id
.
keys
())
}
, dataset labels:
{
sorted
(
label_list
)
}
."
"
\n
Ignoring the model labels as a result."
,
"
\n
Ignoring the model labels as a result."
,
)
)
label_to_id
=
{
label
:
i
for
i
,
label
in
enumerate
(
label_list
)}
label_to_id
=
{
label
:
i
for
i
,
label
in
enumerate
(
label_list
)}
...
@@ -383,7 +383,7 @@ def main():
...
@@ -383,7 +383,7 @@ def main():
dataset_options
.
experimental_distribute
.
auto_shard_policy
=
tf
.
data
.
experimental
.
AutoShardPolicy
.
OFF
dataset_options
.
experimental_distribute
.
auto_shard_policy
=
tf
.
data
.
experimental
.
AutoShardPolicy
.
OFF
num_replicas
=
training_args
.
strategy
.
num_replicas_in_sync
num_replicas
=
training_args
.
strategy
.
num_replicas_in_sync
tf_data
=
dict
()
tf_data
=
{}
max_samples
=
{
max_samples
=
{
"train"
:
data_args
.
max_train_samples
,
"train"
:
data_args
.
max_train_samples
,
"validation"
:
data_args
.
max_eval_samples
,
"validation"
:
data_args
.
max_eval_samples
,
...
...
examples/tensorflow/text-classification/run_text_classification.py
View file @
5e8c8eb5
...
@@ -343,13 +343,13 @@ def main():
...
@@ -343,13 +343,13 @@ def main():
if
"train"
in
datasets
:
if
"train"
in
datasets
:
if
not
is_regression
and
config
.
label2id
!=
PretrainedConfig
(
num_labels
=
num_labels
).
label2id
:
if
not
is_regression
and
config
.
label2id
!=
PretrainedConfig
(
num_labels
=
num_labels
).
label2id
:
label_name_to_id
=
config
.
label2id
label_name_to_id
=
config
.
label2id
if
list
(
sorted
(
label_name_to_id
.
keys
())
)
==
list
(
sorted
(
label_list
)
)
:
if
sorted
(
label_name_to_id
.
keys
())
==
sorted
(
label_list
):
label_to_id
=
label_name_to_id
# Use the model's labels
label_to_id
=
label_name_to_id
# Use the model's labels
else
:
else
:
logger
.
warning
(
logger
.
warning
(
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
f
"model labels:
{
list
(
sorted
(
label_name_to_id
.
keys
())
)
}
, dataset labels:"
f
"model labels:
{
sorted
(
label_name_to_id
.
keys
())
}
, dataset labels:"
f
"
{
list
(
sorted
(
label_list
)
)
}
.
\n
Ignoring the model labels as a result."
,
f
"
{
sorted
(
label_list
)
}
.
\n
Ignoring the model labels as a result."
,
)
)
label_to_id
=
{
v
:
i
for
i
,
v
in
enumerate
(
label_list
)}
label_to_id
=
{
v
:
i
for
i
,
v
in
enumerate
(
label_list
)}
elif
not
is_regression
:
elif
not
is_regression
:
...
@@ -411,7 +411,7 @@ def main():
...
@@ -411,7 +411,7 @@ def main():
dataset_options
.
experimental_distribute
.
auto_shard_policy
=
tf
.
data
.
experimental
.
AutoShardPolicy
.
OFF
dataset_options
.
experimental_distribute
.
auto_shard_policy
=
tf
.
data
.
experimental
.
AutoShardPolicy
.
OFF
num_replicas
=
training_args
.
strategy
.
num_replicas_in_sync
num_replicas
=
training_args
.
strategy
.
num_replicas_in_sync
tf_data
=
dict
()
tf_data
=
{}
max_samples
=
{
max_samples
=
{
"train"
:
data_args
.
max_train_samples
,
"train"
:
data_args
.
max_train_samples
,
"validation"
:
data_args
.
max_val_samples
,
"validation"
:
data_args
.
max_val_samples
,
...
...
Prev
1
2
3
4
5
6
7
8
…
12
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment