Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5e8c8eb5
Unverified
Commit
5e8c8eb5
authored
Feb 22, 2023
by
Aaron Gokaslan
Committed by
GitHub
Feb 22, 2023
Browse files
Apply ruff flake8-comprehensions (#21694)
parent
df06fb1f
Changes
230
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
77 additions
and
95 deletions
+77
-95
examples/flax/image-captioning/run_image_captioning_flax.py
examples/flax/image-captioning/run_image_captioning_flax.py
+6
-8
examples/flax/language-modeling/run_bart_dlm_flax.py
examples/flax/language-modeling/run_bart_dlm_flax.py
+6
-8
examples/flax/language-modeling/run_clm_flax.py
examples/flax/language-modeling/run_clm_flax.py
+6
-8
examples/flax/language-modeling/run_mlm_flax.py
examples/flax/language-modeling/run_mlm_flax.py
+6
-8
examples/flax/language-modeling/run_t5_mlm_flax.py
examples/flax/language-modeling/run_t5_mlm_flax.py
+6
-8
examples/flax/question-answering/run_qa.py
examples/flax/question-answering/run_qa.py
+7
-9
examples/flax/summarization/run_summarization_flax.py
examples/flax/summarization/run_summarization_flax.py
+6
-8
examples/flax/text-classification/run_flax_glue.py
examples/flax/text-classification/run_flax_glue.py
+8
-10
examples/flax/token-classification/run_flax_ner.py
examples/flax/token-classification/run_flax_ner.py
+6
-8
examples/legacy/pytorch-lightning/run_glue.py
examples/legacy/pytorch-lightning/run_glue.py
+1
-1
examples/legacy/pytorch-lightning/run_ner.py
examples/legacy/pytorch-lightning/run_ner.py
+1
-1
examples/legacy/question-answering/run_squad.py
examples/legacy/question-answering/run_squad.py
+3
-3
examples/legacy/run_openai_gpt.py
examples/legacy/run_openai_gpt.py
+1
-1
examples/legacy/run_swag.py
examples/legacy/run_swag.py
+3
-3
examples/legacy/seq2seq/run_distributed_eval.py
examples/legacy/seq2seq/run_distributed_eval.py
+2
-2
examples/legacy/seq2seq/run_eval.py
examples/legacy/seq2seq/run_eval.py
+1
-1
examples/legacy/seq2seq/run_eval_search.py
examples/legacy/seq2seq/run_eval_search.py
+1
-1
examples/legacy/seq2seq/utils.py
examples/legacy/seq2seq/utils.py
+1
-1
examples/pytorch/audio-classification/run_audio_classification.py
.../pytorch/audio-classification/run_audio_classification.py
+3
-3
examples/pytorch/benchmarking/plot_csv_file.py
examples/pytorch/benchmarking/plot_csv_file.py
+3
-3
No files found.
examples/flax/image-captioning/run_image_captioning_flax.py
View file @
5e8c8eb5
...
@@ -892,14 +892,12 @@ def main():
...
@@ -892,14 +892,12 @@ def main():
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/flax/language-modeling/run_bart_dlm_flax.py
View file @
5e8c8eb5
...
@@ -756,14 +756,12 @@ def main():
...
@@ -756,14 +756,12 @@ def main():
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/flax/language-modeling/run_clm_flax.py
View file @
5e8c8eb5
...
@@ -648,14 +648,12 @@ def main():
...
@@ -648,14 +648,12 @@ def main():
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/flax/language-modeling/run_mlm_flax.py
View file @
5e8c8eb5
...
@@ -679,14 +679,12 @@ def main():
...
@@ -679,14 +679,12 @@ def main():
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/flax/language-modeling/run_t5_mlm_flax.py
View file @
5e8c8eb5
...
@@ -791,14 +791,12 @@ def main():
...
@@ -791,14 +791,12 @@ def main():
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/flax/question-answering/run_qa.py
View file @
5e8c8eb5
...
@@ -333,14 +333,12 @@ def create_train_state(
...
@@ -333,14 +333,12 @@ def create_train_state(
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
@@ -642,7 +640,7 @@ def main():
...
@@ -642,7 +640,7 @@ def main():
return
tokenized_examples
return
tokenized_examples
processed_raw_datasets
=
dict
()
processed_raw_datasets
=
{}
if
training_args
.
do_train
:
if
training_args
.
do_train
:
if
"train"
not
in
raw_datasets
:
if
"train"
not
in
raw_datasets
:
raise
ValueError
(
"--do_train requires a train dataset"
)
raise
ValueError
(
"--do_train requires a train dataset"
)
...
...
examples/flax/summarization/run_summarization_flax.py
View file @
5e8c8eb5
...
@@ -742,14 +742,12 @@ def main():
...
@@ -742,14 +742,12 @@ def main():
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/flax/text-classification/run_flax_glue.py
View file @
5e8c8eb5
...
@@ -229,14 +229,12 @@ def create_train_state(
...
@@ -229,14 +229,12 @@ def create_train_state(
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
@@ -449,7 +447,7 @@ def main():
...
@@ -449,7 +447,7 @@ def main():
):
):
# Some have all caps in their config, some don't.
# Some have all caps in their config, some don't.
label_name_to_id
=
{
k
.
lower
():
v
for
k
,
v
in
model
.
config
.
label2id
.
items
()}
label_name_to_id
=
{
k
.
lower
():
v
for
k
,
v
in
model
.
config
.
label2id
.
items
()}
if
list
(
sorted
(
label_name_to_id
.
keys
())
)
==
list
(
sorted
(
label_list
)
)
:
if
sorted
(
label_name_to_id
.
keys
())
==
sorted
(
label_list
):
logger
.
info
(
logger
.
info
(
f
"The configuration of the model provided the following label correspondence:
{
label_name_to_id
}
. "
f
"The configuration of the model provided the following label correspondence:
{
label_name_to_id
}
. "
"Using it!"
"Using it!"
...
@@ -458,7 +456,7 @@ def main():
...
@@ -458,7 +456,7 @@ def main():
else
:
else
:
logger
.
warning
(
logger
.
warning
(
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
"Your model seems to have been trained with labels, but they don't match the dataset: "
,
f
"model labels:
{
list
(
sorted
(
label_name_to_id
.
keys
())
)
}
, dataset labels:
{
list
(
sorted
(
label_list
)
)
}
."
f
"model labels:
{
sorted
(
label_name_to_id
.
keys
())
}
, dataset labels:
{
sorted
(
label_list
)
}
."
"
\n
Ignoring the model labels as a result."
,
"
\n
Ignoring the model labels as a result."
,
)
)
elif
data_args
.
task_name
is
None
:
elif
data_args
.
task_name
is
None
:
...
...
examples/flax/token-classification/run_flax_ner.py
View file @
5e8c8eb5
...
@@ -290,14 +290,12 @@ def create_train_state(
...
@@ -290,14 +290,12 @@ def create_train_state(
flat_params
=
traverse_util
.
flatten_dict
(
params
)
flat_params
=
traverse_util
.
flatten_dict
(
params
)
# find out all LayerNorm parameters
# find out all LayerNorm parameters
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_candidates
=
[
"layernorm"
,
"layer_norm"
,
"ln"
]
layer_norm_named_params
=
set
(
layer_norm_named_params
=
{
[
layer
[
-
2
:]
layer
[
-
2
:]
for
layer_norm_name
in
layer_norm_candidates
for
layer_norm_name
in
layer_norm_candidates
for
layer
in
flat_params
.
keys
()
for
layer
in
flat_params
.
keys
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
if
layer_norm_name
in
""
.
join
(
layer
).
lower
()
]
}
)
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
flat_mask
=
{
path
:
(
path
[
-
1
]
!=
"bias"
and
path
[
-
2
:]
not
in
layer_norm_named_params
)
for
path
in
flat_params
}
return
traverse_util
.
unflatten_dict
(
flat_mask
)
return
traverse_util
.
unflatten_dict
(
flat_mask
)
...
...
examples/legacy/pytorch-lightning/run_glue.py
View file @
5e8c8eb5
...
@@ -192,7 +192,7 @@ def main():
...
@@ -192,7 +192,7 @@ def main():
# Optionally, predict on dev set and write to output_dir
# Optionally, predict on dev set and write to output_dir
if
args
.
do_predict
:
if
args
.
do_predict
:
checkpoints
=
list
(
sorted
(
glob
.
glob
(
os
.
path
.
join
(
args
.
output_dir
,
"checkpoint-epoch=*.ckpt"
),
recursive
=
True
))
)
checkpoints
=
sorted
(
glob
.
glob
(
os
.
path
.
join
(
args
.
output_dir
,
"checkpoint-epoch=*.ckpt"
),
recursive
=
True
))
model
=
model
.
load_from_checkpoint
(
checkpoints
[
-
1
])
model
=
model
.
load_from_checkpoint
(
checkpoints
[
-
1
])
return
trainer
.
test
(
model
)
return
trainer
.
test
(
model
)
...
...
examples/legacy/pytorch-lightning/run_ner.py
View file @
5e8c8eb5
...
@@ -211,6 +211,6 @@ if __name__ == "__main__":
...
@@ -211,6 +211,6 @@ if __name__ == "__main__":
# pl use this default format to create a checkpoint:
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
checkpoints
=
list
(
sorted
(
glob
.
glob
(
os
.
path
.
join
(
args
.
output_dir
,
"checkpoint-epoch=*.ckpt"
),
recursive
=
True
))
)
checkpoints
=
sorted
(
glob
.
glob
(
os
.
path
.
join
(
args
.
output_dir
,
"checkpoint-epoch=*.ckpt"
),
recursive
=
True
))
model
=
model
.
load_from_checkpoint
(
checkpoints
[
-
1
])
model
=
model
.
load_from_checkpoint
(
checkpoints
[
-
1
])
trainer
.
test
(
model
)
trainer
.
test
(
model
)
examples/legacy/question-answering/run_squad.py
View file @
5e8c8eb5
...
@@ -810,10 +810,10 @@ def main():
...
@@ -810,10 +810,10 @@ def main():
logger
.
info
(
"Loading checkpoints saved during training for evaluation"
)
logger
.
info
(
"Loading checkpoints saved during training for evaluation"
)
checkpoints
=
[
args
.
output_dir
]
checkpoints
=
[
args
.
output_dir
]
if
args
.
eval_all_checkpoints
:
if
args
.
eval_all_checkpoints
:
checkpoints
=
list
(
checkpoints
=
[
os
.
path
.
dirname
(
c
)
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
"/**/"
+
WEIGHTS_NAME
,
recursive
=
True
))
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
"/**/"
+
WEIGHTS_NAME
,
recursive
=
True
))
)
]
else
:
else
:
logger
.
info
(
"Loading checkpoint %s for evaluation"
,
args
.
model_name_or_path
)
logger
.
info
(
"Loading checkpoint %s for evaluation"
,
args
.
model_name_or_path
)
...
@@ -830,7 +830,7 @@ def main():
...
@@ -830,7 +830,7 @@ def main():
# Evaluate
# Evaluate
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
global_step
)
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
global_step
)
result
=
dict
((
k
+
(
"_{}"
.
format
(
global_step
)
if
global_step
else
""
)
,
v
)
for
k
,
v
in
result
.
items
()
)
result
=
{
k
+
(
"_{}"
.
format
(
global_step
)
if
global_step
else
""
)
:
v
for
k
,
v
in
result
.
items
()
}
results
.
update
(
result
)
results
.
update
(
result
)
logger
.
info
(
"Results: {}"
.
format
(
results
))
logger
.
info
(
"Results: {}"
.
format
(
results
))
...
...
examples/legacy/run_openai_gpt.py
View file @
5e8c8eb5
...
@@ -189,7 +189,7 @@ def main():
...
@@ -189,7 +189,7 @@ def main():
return
tokenizer
.
convert_tokens_to_ids
(
tokenizer
.
tokenize
(
obj
))
return
tokenizer
.
convert_tokens_to_ids
(
tokenizer
.
tokenize
(
obj
))
elif
isinstance
(
obj
,
int
):
elif
isinstance
(
obj
,
int
):
return
obj
return
obj
return
list
(
tokenize_and_encode
(
o
)
for
o
in
obj
)
return
[
tokenize_and_encode
(
o
)
for
o
in
obj
]
logger
.
info
(
"Encoding dataset..."
)
logger
.
info
(
"Encoding dataset..."
)
train_dataset
=
load_rocstories_dataset
(
args
.
train_dataset
)
train_dataset
=
load_rocstories_dataset
(
args
.
train_dataset
)
...
...
examples/legacy/run_swag.py
View file @
5e8c8eb5
...
@@ -696,9 +696,9 @@ def main():
...
@@ -696,9 +696,9 @@ def main():
checkpoints
=
[
args
.
model_name_or_path
]
checkpoints
=
[
args
.
model_name_or_path
]
if
args
.
eval_all_checkpoints
:
if
args
.
eval_all_checkpoints
:
checkpoints
=
list
(
checkpoints
=
[
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
"/**/"
+
WEIGHTS_NAME
,
recursive
=
True
))
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
"/**/"
+
WEIGHTS_NAME
,
recursive
=
True
))
)
]
logger
.
info
(
"Evaluate the following checkpoints: %s"
,
checkpoints
)
logger
.
info
(
"Evaluate the following checkpoints: %s"
,
checkpoints
)
...
@@ -712,7 +712,7 @@ def main():
...
@@ -712,7 +712,7 @@ def main():
# Evaluate
# Evaluate
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
global_step
)
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
global_step
)
result
=
dict
((
k
+
(
"_{}"
.
format
(
global_step
)
if
global_step
else
""
)
,
v
)
for
k
,
v
in
result
.
items
()
)
result
=
{
k
+
(
"_{}"
.
format
(
global_step
)
if
global_step
else
""
)
:
v
for
k
,
v
in
result
.
items
()
}
results
.
update
(
result
)
results
.
update
(
result
)
logger
.
info
(
"Results: {}"
.
format
(
results
))
logger
.
info
(
"Results: {}"
.
format
(
results
))
...
...
examples/legacy/seq2seq/run_distributed_eval.py
View file @
5e8c8eb5
...
@@ -111,7 +111,7 @@ def eval_data_dir(
...
@@ -111,7 +111,7 @@ def eval_data_dir(
if
num_return_sequences
>
1
:
if
num_return_sequences
>
1
:
preds
=
chunks
(
preds
,
num_return_sequences
)
# batch size chunks, each of size num_return_seq
preds
=
chunks
(
preds
,
num_return_sequences
)
# batch size chunks, each of size num_return_seq
for
i
,
pred
in
enumerate
(
preds
):
for
i
,
pred
in
enumerate
(
preds
):
results
.
append
(
dict
(
pred
=
pred
,
id
=
ids
[
i
].
item
()
)
)
results
.
append
(
{
"
pred
"
:
pred
,
"
id
"
:
ids
[
i
].
item
()
}
)
save_json
(
results
,
save_path
)
save_json
(
results
,
save_path
)
return
results
,
sampler
.
num_replicas
return
results
,
sampler
.
num_replicas
...
@@ -232,7 +232,7 @@ def combine_partial_results(partial_results) -> List:
...
@@ -232,7 +232,7 @@ def combine_partial_results(partial_results) -> List:
records
=
[]
records
=
[]
for
partial_result
in
partial_results
:
for
partial_result
in
partial_results
:
records
.
extend
(
partial_result
)
records
.
extend
(
partial_result
)
records
=
list
(
sorted
(
records
,
key
=
lambda
x
:
x
[
"id"
])
)
records
=
sorted
(
records
,
key
=
lambda
x
:
x
[
"id"
])
preds
=
[
x
[
"pred"
]
for
x
in
records
]
preds
=
[
x
[
"pred"
]
for
x
in
records
]
return
preds
return
preds
...
...
examples/legacy/seq2seq/run_eval.py
View file @
5e8c8eb5
...
@@ -76,7 +76,7 @@ def generate_summaries_or_translations(
...
@@ -76,7 +76,7 @@ def generate_summaries_or_translations(
fout
.
close
()
fout
.
close
()
runtime
=
int
(
time
.
time
()
-
start_time
)
# seconds
runtime
=
int
(
time
.
time
()
-
start_time
)
# seconds
n_obs
=
len
(
examples
)
n_obs
=
len
(
examples
)
return
dict
(
n_obs
=
n_obs
,
runtime
=
runtime
,
seconds_per_sample
=
round
(
runtime
/
n_obs
,
4
)
)
return
{
"
n_obs
"
:
n_obs
,
"
runtime
"
:
runtime
,
"
seconds_per_sample
"
:
round
(
runtime
/
n_obs
,
4
)
}
def
datetime_now
():
def
datetime_now
():
...
...
examples/legacy/seq2seq/run_eval_search.py
View file @
5e8c8eb5
...
@@ -36,7 +36,7 @@ def parse_search_arg(search):
...
@@ -36,7 +36,7 @@ def parse_search_arg(search):
groups
=
search
.
split
()
groups
=
search
.
split
()
entries
=
{
k
:
vs
for
k
,
vs
in
(
g
.
split
(
"="
)
for
g
in
groups
)}
entries
=
{
k
:
vs
for
k
,
vs
in
(
g
.
split
(
"="
)
for
g
in
groups
)}
entry_names
=
list
(
entries
.
keys
())
entry_names
=
list
(
entries
.
keys
())
sets
=
[
list
(
f
"--
{
k
}
{
v
}
"
for
v
in
vs
.
split
(
":"
)
)
for
k
,
vs
in
entries
.
items
()]
sets
=
[
[
f
"--
{
k
}
{
v
}
"
for
v
in
vs
.
split
(
":"
)
]
for
k
,
vs
in
entries
.
items
()]
matrix
=
[
list
(
x
)
for
x
in
itertools
.
product
(
*
sets
)]
matrix
=
[
list
(
x
)
for
x
in
itertools
.
product
(
*
sets
)]
return
matrix
,
entry_names
return
matrix
,
entry_names
...
...
examples/legacy/seq2seq/utils.py
View file @
5e8c8eb5
...
@@ -456,7 +456,7 @@ def pickle_save(obj, path):
...
@@ -456,7 +456,7 @@ def pickle_save(obj, path):
def
flatten_list
(
summary_ids
:
List
[
List
]):
def
flatten_list
(
summary_ids
:
List
[
List
]):
return
[
x
for
x
in
itertools
.
chain
.
from_iterable
(
summary_ids
)
]
return
list
(
itertools
.
chain
.
from_iterable
(
summary_ids
)
)
def
save_git_info
(
folder_path
:
str
)
->
None
:
def
save_git_info
(
folder_path
:
str
)
->
None
:
...
...
examples/pytorch/audio-classification/run_audio_classification.py
View file @
5e8c8eb5
...
@@ -293,7 +293,7 @@ def main():
...
@@ -293,7 +293,7 @@ def main():
audio
[
"array"
],
max_length
=
data_args
.
max_length_seconds
,
sample_rate
=
feature_extractor
.
sampling_rate
audio
[
"array"
],
max_length
=
data_args
.
max_length_seconds
,
sample_rate
=
feature_extractor
.
sampling_rate
)
)
output_batch
[
"input_values"
].
append
(
wav
)
output_batch
[
"input_values"
].
append
(
wav
)
output_batch
[
"labels"
]
=
[
label
for
label
in
batch
[
data_args
.
label_column_name
]
]
output_batch
[
"labels"
]
=
list
(
batch
[
data_args
.
label_column_name
]
)
return
output_batch
return
output_batch
...
@@ -303,14 +303,14 @@ def main():
...
@@ -303,14 +303,14 @@ def main():
for
audio
in
batch
[
data_args
.
audio_column_name
]:
for
audio
in
batch
[
data_args
.
audio_column_name
]:
wav
=
audio
[
"array"
]
wav
=
audio
[
"array"
]
output_batch
[
"input_values"
].
append
(
wav
)
output_batch
[
"input_values"
].
append
(
wav
)
output_batch
[
"labels"
]
=
[
label
for
label
in
batch
[
data_args
.
label_column_name
]
]
output_batch
[
"labels"
]
=
list
(
batch
[
data_args
.
label_column_name
]
)
return
output_batch
return
output_batch
# Prepare label mappings.
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
# We'll include these in the model's config to get human readable labels in the Inference API.
labels
=
raw_datasets
[
"train"
].
features
[
data_args
.
label_column_name
].
names
labels
=
raw_datasets
[
"train"
].
features
[
data_args
.
label_column_name
].
names
label2id
,
id2label
=
dict
(),
dict
()
label2id
,
id2label
=
{},
{}
for
i
,
label
in
enumerate
(
labels
):
for
i
,
label
in
enumerate
(
labels
):
label2id
[
label
]
=
str
(
i
)
label2id
[
label
]
=
str
(
i
)
id2label
[
str
(
i
)]
=
label
id2label
[
str
(
i
)]
=
label
...
...
examples/pytorch/benchmarking/plot_csv_file.py
View file @
5e8c8eb5
...
@@ -83,7 +83,7 @@ def can_convert_to_float(string):
...
@@ -83,7 +83,7 @@ def can_convert_to_float(string):
class
Plot
:
class
Plot
:
def
__init__
(
self
,
args
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
args
=
args
self
.
result_dict
=
defaultdict
(
lambda
:
dict
(
bsz
=
[],
seq_len
=
[],
result
=
{}
)
)
self
.
result_dict
=
defaultdict
(
lambda
:
{
"bsz"
:
[],
"
seq_len
"
:
[],
"
result
"
:
{}
}
)
with
open
(
self
.
args
.
csv_file
,
newline
=
""
)
as
csv_file
:
with
open
(
self
.
args
.
csv_file
,
newline
=
""
)
as
csv_file
:
reader
=
csv
.
DictReader
(
csv_file
)
reader
=
csv
.
DictReader
(
csv_file
)
...
@@ -116,8 +116,8 @@ class Plot:
...
@@ -116,8 +116,8 @@ class Plot:
axis
.
set_major_formatter
(
ScalarFormatter
())
axis
.
set_major_formatter
(
ScalarFormatter
())
for
model_name_idx
,
model_name
in
enumerate
(
self
.
result_dict
.
keys
()):
for
model_name_idx
,
model_name
in
enumerate
(
self
.
result_dict
.
keys
()):
batch_sizes
=
sorted
(
list
(
set
(
self
.
result_dict
[
model_name
][
"bsz"
]))
)
batch_sizes
=
sorted
(
set
(
self
.
result_dict
[
model_name
][
"bsz"
]))
sequence_lengths
=
sorted
(
list
(
set
(
self
.
result_dict
[
model_name
][
"seq_len"
]))
)
sequence_lengths
=
sorted
(
set
(
self
.
result_dict
[
model_name
][
"seq_len"
]))
results
=
self
.
result_dict
[
model_name
][
"result"
]
results
=
self
.
result_dict
[
model_name
][
"result"
]
(
x_axis_array
,
inner_loop_array
)
=
(
(
x_axis_array
,
inner_loop_array
)
=
(
...
...
Prev
1
2
3
4
5
…
12
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment