Unverified Commit 5daca95d authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #2268 from aaugustin/improve-repository-structure

Improve repository structure
parents 54abc67a 00204f2b
......@@ -18,8 +18,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, floats_tensor, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device
......@@ -39,7 +39,7 @@ if is_torch_available():
@require_torch
class BertModelTest(CommonTestCases.CommonModelTester):
class BertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
......@@ -475,7 +475,3 @@ class BertModelTest(CommonTestCases.CommonModelTester):
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = BertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import copy
import json
import logging
import os.path
import random
import shutil
import sys
import tempfile
import unittest
import uuid
from transformers import is_torch_available
from .utils import require_torch, slow, torch_device
if is_torch_available():
import torch
import numpy as np
from transformers import (
AdaptiveEmbedding,
PretrainedConfig,
PreTrainedModel,
BertModel,
BertConfig,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
)
if sys.version_info[0] == 2:
class TemporaryDirectory(object):
"""Context manager for tempfile.mkdtemp() so it's usable with "with" statement."""
def __enter__(self):
self.name = tempfile.mkdtemp()
return self.name
def __exit__(self, exc_type, exc_value, traceback):
shutil.rmtree(self.name)
else:
TemporaryDirectory = tempfile.TemporaryDirectory
unicode = str
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key:
setattr(configs_no_init, key, 0.0)
return configs_no_init
@require_torch
class ModelTesterMixin:
model_tester = None
all_model_classes = ()
test_torchscript = True
test_pruning = True
test_resize_embeddings = True
test_head_masking = True
is_encoder_decoder = False
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
out_2 = outputs[0].numpy()
out_2[np.isnan(out_2)] = 0
with TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
after_outputs = model(**inputs_dict)
# Make sure we don't have nans
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
param.data.mean().item(),
[0.0, 1.0],
msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
)
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**inputs_dict)[0]
second = model(**inputs_dict)[0]
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
decoder_seq_length = (
self.model_tester.decoder_seq_length
if hasattr(self.model_tester, "decoder_seq_length")
else self.model_tester.seq_length
)
encoder_seq_length = (
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length
)
decoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
)
encoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
)
for model_class in self.all_model_classes:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
self.assertEqual(out_len % 2, 0)
decoder_attentions = outputs[(out_len // 2) - 1]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# Check attention is always last and order is fine
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, True)
self_attentions = outputs[-1]
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_torchscript(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self._create_and_check_torchscript(config, inputs_dict)
def test_torchscript_output_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_attentions = True
self._create_and_check_torchscript(config, inputs_dict)
def test_torchscript_output_hidden_state(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
self._create_and_check_torchscript(config, inputs_dict)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = inputs_dict["input_ids"] # Let's keep only input_ids
try:
traced_gpt2 = torch.jit.trace(model, inputs)
except RuntimeError:
self.fail("Couldn't trace module.")
with TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_gpt2, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_params = model.parameters()
loaded_model_params = loaded_model.parameters()
models_equal = True
for p1, p2 in zip(model_params, loaded_model_params):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_headmasking(self):
if not self.test_head_masking:
return
global_rng.seed(42)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
global_rng.seed()
config.output_attentions = True
config.output_hidden_states = True
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
# Prepare head_mask
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
head_mask = torch.ones(
self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device
)
head_mask[0, 0] = 0
head_mask[-1, :-1] = 0
head_mask.requires_grad_(requires_grad=True)
inputs = inputs_dict.copy()
inputs["head_mask"] = head_mask
outputs = model(**inputs)
# Test that we can get a gradient back for importance score computation
output = sum(t.sum() for t in outputs[0])
output = output.sum()
output.backward()
multihead_outputs = head_mask.grad
attentions = outputs[-1]
hidden_states = outputs[-2]
# Remove Nan
for t in attentions:
self.assertLess(
torch.sum(torch.isnan(t)), t.numel() / 4
) # Check we don't have more than 25% nans (arbitrary)
attentions = [
t.masked_fill(torch.isnan(t), 0.0) for t in attentions
] # remove them (the test is less complete)
self.assertIsNotNone(multihead_outputs)
self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
def test_head_pruning(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config=config)
model.to(torch_device)
model.eval()
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
model.prune_heads(heads_to_prune)
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def test_head_pruning_save_load_from_pretrained(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config=config)
model.to(torch_device)
model.eval()
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
model.prune_heads(heads_to_prune)
with TemporaryDirectory() as temp_dir_name:
model.save_pretrained(temp_dir_name)
model = model_class.from_pretrained(temp_dir_name)
model.to(torch_device)
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def test_head_pruning_save_load_from_config_init(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
config.output_attentions = True
config.output_hidden_states = False
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
config.pruned_heads = heads_to_prune
model = model_class(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def test_head_pruning_integration(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
config.output_attentions = True
config.output_hidden_states = False
heads_to_prune = {0: [0], 1: [1, 2]}
config.pruned_heads = heads_to_prune
model = model_class(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
with TemporaryDirectory() as temp_dir_name:
model.save_pretrained(temp_dir_name)
model = model_class.from_pretrained(temp_dir_name)
model.to(torch_device)
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
heads_to_prune = {0: [0], 2: [1, 2]}
model.prune_heads(heads_to_prune)
with torch.no_grad():
outputs = model(**inputs_dict)
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
config.output_hidden_states = True
config.output_attentions = False
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
hidden_states = outputs[-1]
self.assertEqual(model.config.output_attentions, False)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length,
self.model_tester.hidden_size,
],
)
def test_resize_tokens_embeddings(self):
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
model.set_input_embeddings(torch.nn.Embedding(10, 10))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, torch.nn.Linear))
def test_tie_model_weights(self):
if not self.test_torchscript:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_class in self.all_model_classes:
config.torchscript = True
model_not_tied = model_class(config)
if model_not_tied.get_output_embeddings() is None:
continue
params_not_tied = list(model_not_tied.parameters())
config_tied = copy.deepcopy(config)
config_tied.torchscript = False
model_tied = model_class(config_tied)
params_tied = list(model_tied.parameters())
# Check that the embedding layer and decoding layer are the same in size and in value
self.assertGreater(len(params_not_tied), len(params_tied))
# self.assertTrue(check_same_values(embeddings, decoding))
# # Check that after modification, they remain the same.
# embeddings.weight.data.div_(2)
# # Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
# self.assertTrue(check_same_values(embeddings, decoding))
# # Check that after modification, they remain the same.
# decoding.weight.data.div_(4)
# # Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
# self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model_tied.resize_token_embeddings(config.vocab_size + 10)
params_tied_2 = list(model_tied.parameters())
self.assertGreater(len(params_not_tied), len(params_tied))
self.assertEqual(len(params_tied_2), len(params_tied))
# decoding.weight.data.mul_(20)
# # Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
# self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.is_encoder_decoder:
input_ids = inputs_dict["input_ids"]
del inputs_dict["input_ids"]
else:
encoder_input_ids = inputs_dict["encoder_input_ids"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
del inputs_dict["encoder_input_ids"]
del inputs_dict["decoder_input_ids"]
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs_dict["inputs_embeds"] = wte(input_ids)
else:
inputs_dict["encoder_inputs_embeds"] = wte(encoder_input_ids)
inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
outputs = model(**inputs_dict)
class ConfigTester(object):
def __init__(self, parent, config_class=None, **kwargs):
self.parent = parent
self.config_class = config_class
self.inputs_dict = kwargs
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "vocab_size"))
self.parent.assertTrue(hasattr(config, "hidden_size"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
self.parent.assertTrue(hasattr(config, "num_hidden_layers"))
def create_and_test_config_to_json_string(self):
config = self.config_class(**self.inputs_dict)
obj = json.loads(config.to_json_string())
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key], value)
def create_and_test_config_to_json_file(self):
config_first = self.config_class(**self.inputs_dict)
json_file_path = os.path.join(os.getcwd(), "config_" + str(uuid.uuid4()) + ".json")
config_first.to_json_file(json_file_path)
config_second = self.config_class.from_json_file(json_file_path)
os.remove(json_file_path)
self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())
def run_common_tests(self):
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
global_rng = random.Random()
def ids_tensor(shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor of the shape within the vocab size."""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
@require_torch
class ModelUtilsTest(unittest.TestCase):
@slow
def test_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
config = BertConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, PretrainedConfig)
model = BertModel.from_pretrained(model_name)
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, PreTrainedModel)
for value in loading_info.values():
self.assertEqual(len(value), 0)
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(model.config, config)
......@@ -17,8 +17,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device
......@@ -27,7 +27,7 @@ if is_torch_available():
@require_torch
class CTRLModelTest(CommonTestCases.CommonModelTester):
class CTRLModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else ()
test_pruning = False
......@@ -211,7 +211,3 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
for model_name in list(CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = CTRLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import require_torch, torch_device
......@@ -35,7 +35,7 @@ if is_torch_available():
@require_torch
class DistilBertModelTest(CommonTestCases.CommonModelTester):
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(DistilBertModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
......@@ -250,7 +250,3 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
# self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -48,7 +48,3 @@ class EncoderDecoderModelTest(unittest.TestCase):
with self.assertRaises(ValueError):
_ = Model2Model.from_pretrained("does-not-exist")
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device
......@@ -34,7 +34,7 @@ if is_torch_available():
@require_torch
class GPT2ModelTest(CommonTestCases.CommonModelTester):
class GPT2ModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
......@@ -248,7 +248,3 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
for model_name in list(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = GPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device
......@@ -34,7 +34,7 @@ if is_torch_available():
@require_torch
class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
......@@ -205,7 +205,3 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
for model_name in list(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = OpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device
......@@ -37,7 +37,7 @@ if is_torch_available():
@require_torch
class RobertaModelTest(CommonTestCases.CommonModelTester):
class RobertaModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (RobertaForMaskedLM, RobertaModel) if is_torch_available() else ()
......@@ -298,7 +298,3 @@ class RobertaModelIntegrationTest(unittest.TestCase):
self.assertEqual(output.shape, expected_shape)
expected_tensor = torch.Tensor([[-0.9469, 0.3913, 0.5118]])
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-3))
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import is_torch_available
from .configuration_common_test import ConfigTester
from .modeling_common_test import CommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow
......@@ -29,7 +29,7 @@ if is_torch_available():
@require_torch
class T5ModelTest(CommonTestCases.CommonModelTester):
class T5ModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (T5Model, T5WithLMHeadModel) if is_torch_available() else ()
test_pruning = False
......@@ -212,7 +212,3 @@ class T5ModelTest(CommonTestCases.CommonModelTester):
for model_name in list(T5_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = T5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import AlbertConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -33,7 +33,7 @@ if is_tf_available():
@require_tf
class TFAlbertModelTest(TFCommonTestCases.TFCommonModelTester):
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(TFAlbertModel, TFAlbertForMaskedLM, TFAlbertForSequenceClassification) if is_tf_available() else ()
......@@ -213,7 +213,3 @@ class TFAlbertModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFAlbertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -99,7 +99,3 @@ class TFAutoModelTest(unittest.TestCase):
logging.basicConfig(level=logging.INFO)
model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(model, TFBertForMaskedLM)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import BertConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -38,7 +38,7 @@ if is_tf_available():
@require_tf
class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
......@@ -315,7 +315,3 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in ["bert-base-uncased"]:
model = TFBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import copy
import os
import random
import shutil
import sys
import tempfile
from transformers import is_tf_available, is_torch_available
from .utils import require_tf
if is_tf_available():
import tensorflow as tf
import numpy as np
# from transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
if sys.version_info[0] == 2:
class TemporaryDirectory(object):
"""Context manager for tempfile.mkdtemp() so it's usable with "with" statement."""
def __enter__(self):
self.name = tempfile.mkdtemp()
return self.name
def __exit__(self, exc_type, exc_value, traceback):
shutil.rmtree(self.name)
else:
TemporaryDirectory = tempfile.TemporaryDirectory
unicode = str
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key:
setattr(configs_no_init, key, 0.0)
return configs_no_init
@require_tf
class TFModelTesterMixin:
model_tester = None
all_model_classes = ()
test_torchscript = True
test_pruning = True
test_resize_embeddings = True
is_encoder_decoder = False
def test_initialization(self):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# configs_no_init = _config_zero_init(config)
# for model_class in self.all_model_classes:
# model = model_class(config=configs_no_init)
# for name, param in model.named_parameters():
# if param.requires_grad:
# self.assertIn(param.data.mean().item(), [0.0, 1.0],
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs = model(inputs_dict)
with TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
after_outputs = model(inputs_dict)
# Make sure we don't have nans
out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_pt_tf_model_equivalence(self):
if not is_torch_available():
return
import torch
import transformers
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beggining
pt_model_class = getattr(transformers, pt_model_class_name)
config.output_hidden_states = True
tf_model = model_class(config)
pt_model = pt_model_class(config)
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=inputs_dict)
pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(inputs_dict, training=False)
tf_hidden_states = tfo[0].numpy()
pt_hidden_states = pto[0].numpy()
tf_hidden_states[np.isnan(tf_hidden_states)] = 0
pt_hidden_states[np.isnan(pt_hidden_states)] = 0
max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
self.assertLessEqual(max_diff, 2e-2)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(inputs_dict)
tfo = tfo[0].numpy()
pto = pto[0].numpy()
tfo[np.isnan(tfo)] = 0
pto[np.isnan(pto)] = 0
max_diff = np.amax(np.abs(tfo - pto))
self.assertLessEqual(max_diff, 2e-2)
def test_compile_tf_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if self.is_encoder_decoder:
input_ids = {
"decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
"encoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="encoder_input_ids", dtype="int32"),
}
else:
input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
for model_class in self.all_model_classes:
# Prepare our model
model = model_class(config)
# Let's load it from the disk to be sure we can use pretrained weights
with TemporaryDirectory() as tmpdirname:
outputs = model(inputs_dict) # build the model
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
outputs_dict = model(input_ids)
hidden_states = outputs_dict[0]
# Add a dense layer on top to test intetgration with other keras modules
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
# Compile extended model
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs_dict = model(inputs_dict)
inputs_keywords = copy.deepcopy(inputs_dict)
input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "decoder_input_ids", None)
outputs_keywords = model(input_ids, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
decoder_seq_length = (
self.model_tester.decoder_seq_length
if hasattr(self.model_tester, "decoder_seq_length")
else self.model_tester.seq_length
)
encoder_seq_length = (
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length
)
decoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
)
encoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
)
for model_class in self.all_model_classes:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config)
outputs = model(inputs_dict)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
self.assertEqual(out_len % 2, 0)
decoder_attentions = outputs[(out_len // 2) - 1]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# Check attention is always last and order is fine
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config)
outputs = model(inputs_dict)
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, True)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
config.output_hidden_states = True
config.output_attentions = False
model = model_class(config)
outputs = model(inputs_dict)
hidden_states = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_attentions, False)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size]
)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
x = model.get_output_embeddings()
assert x is None or isinstance(x, tf.keras.layers.Layer)
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
first, second = model(inputs_dict, training=False)[0], model(inputs_dict, training=False)[0]
out_1 = first.numpy()
out_2 = second.numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def _get_embeds(self, wte, input_ids):
# ^^ In our TF models, the input_embeddings can take slightly different forms,
# so we try a few of them.
# We used to fall back to just synthetically creating a dummy tensor of ones:
try:
x = wte(input_ids, mode="embedding")
except Exception:
try:
x = wte([input_ids], mode="embedding")
except Exception:
try:
x = wte([input_ids, None, None, None], mode="embedding")
except Exception:
if hasattr(self.model_tester, "embedding_size"):
x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32)
else:
x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32)
return x
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.is_encoder_decoder:
input_ids = inputs_dict["input_ids"]
del inputs_dict["input_ids"]
else:
encoder_input_ids = inputs_dict["encoder_input_ids"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
del inputs_dict["encoder_input_ids"]
del inputs_dict["decoder_input_ids"]
for model_class in self.all_model_classes:
model = model_class(config)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs_dict["inputs_embeds"] = self._get_embeds(wte, input_ids)
else:
inputs_dict["encoder_inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
inputs_dict["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
outputs = model(inputs_dict)
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
return output
......@@ -18,8 +18,8 @@ import unittest
from transformers import CTRLConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -28,7 +28,7 @@ if is_tf_available():
@require_tf
class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else ()
......@@ -201,7 +201,3 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in list(TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFCTRLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import DistilBertConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import require_tf
......@@ -33,7 +33,7 @@ if is_tf_available():
@require_tf
class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
......@@ -221,7 +221,3 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
# self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import GPT2Config, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -34,7 +34,7 @@ if is_tf_available():
@require_tf
class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
# all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel) if is_tf_available() else ()
......@@ -234,7 +234,3 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in list(TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFGPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import OpenAIGPTConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -34,7 +34,7 @@ if is_tf_available():
@require_tf
class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel) if is_tf_available() else ()
......@@ -235,7 +235,3 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in list(TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFOpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import RobertaConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -36,7 +36,7 @@ if is_tf_available():
@require_tf
class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(TFRobertaModel, TFRobertaForMaskedLM, TFRobertaForSequenceClassification) if is_tf_available() else ()
......@@ -244,7 +244,3 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
self.assertEqual(list(output.numpy().shape), expected_shape)
expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-3))
if __name__ == "__main__":
unittest.main()
......@@ -18,8 +18,8 @@ import unittest
from transformers import T5Config, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -28,7 +28,7 @@ if is_tf_available():
@require_tf
class TFT5ModelTest(TFCommonTestCases.TFCommonModelTester):
class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
is_encoder_decoder = True
all_model_classes = (TFT5Model, TFT5WithLMHeadModel) if is_tf_available() else ()
......@@ -165,7 +165,3 @@ class TFT5ModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in ["t5-small"]:
model = TFT5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -19,8 +19,8 @@ import unittest
from transformers import TransfoXLConfig, is_tf_available
from .configuration_common_test import ConfigTester
from .modeling_tf_common_test import TFCommonTestCases, ids_tensor
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
......@@ -34,7 +34,7 @@ if is_tf_available():
@require_tf
class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFTransfoXLModel, TFTransfoXLLMHeadModel) if is_tf_available() else ()
test_pruning = False
......@@ -207,7 +207,3 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
for model_name in list(TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFTransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment