Unverified Commit 5d29530e authored by nakranivaibhav's avatar nakranivaibhav Committed by GitHub
Browse files

Improved type hinting for all attention parameters (#28479)

* Changed type hinting for all attention inputs to 'Optional[Tuple[torch.FloatTensor,...]] = None'

* Fixed the ruff formatting issue

* fixed type hinting for all hidden_states to 'Optional[Tuple[torch.FloatTensor, ...]] = None'

* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py

* test fail update

* fixed type hinting for these 15 scripts modeling_xlnet.py,modeling_tf_xlnet.py,modeling_led.py,modeling_tf_led.py,modleing_rwkv.py,modeling_dpt.py,modeling_tf_cvt.py,modeling_clip.py,modeling_flax_clip.py,modeling_tf_clip.py,modeling_longformer.py,modeling_tf_longformer.py,modeling_siglip.py,modeling_clap.py,modeling_git.py

* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py

* test fail update

* Removed the myvenv file

* Fixed type hinting for these 8 scripts modeling_tvlt.py,modeling_sam.py,modeling_tf_sam.py,modeling_tvp.py,modeling_rag.py,modeling_tf_rag.py,modeling_tf_xlm.py,modeling_xlm.py
parent 738ec75c
...@@ -104,9 +104,9 @@ class NatEncoderOutput(ModelOutput): ...@@ -104,9 +104,9 @@ class NatEncoderOutput(ModelOutput):
""" """
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -140,9 +140,9 @@ class NatModelOutput(ModelOutput): ...@@ -140,9 +140,9 @@ class NatModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -176,9 +176,9 @@ class NatImageClassifierOutput(ModelOutput): ...@@ -176,9 +176,9 @@ class NatImageClassifierOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
class NatEmbeddings(nn.Module): class NatEmbeddings(nn.Module):
......
...@@ -120,14 +120,14 @@ class RetrievAugLMMarginOutput(ModelOutput): ...@@ -120,14 +120,14 @@ class RetrievAugLMMarginOutput(ModelOutput):
context_input_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None
context_attention_mask: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None
question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -210,14 +210,14 @@ class RetrievAugLMOutput(ModelOutput): ...@@ -210,14 +210,14 @@ class RetrievAugLMOutput(ModelOutput):
context_input_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None
context_attention_mask: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None
question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class RagPreTrainedModel(PreTrainedModel): class RagPreTrainedModel(PreTrainedModel):
......
...@@ -123,13 +123,13 @@ class TFRetrievAugLMMarginOutput(ModelOutput): ...@@ -123,13 +123,13 @@ class TFRetrievAugLMMarginOutput(ModelOutput):
context_input_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None
context_attention_mask: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None
question_encoder_last_hidden_state: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None
question_enc_hidden_states: Tuple[tf.Tensor] | None = None question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
question_enc_attentions: Tuple[tf.Tensor] | None = None question_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_last_hidden_state: tf.Tensor | None = None
generator_enc_hidden_states: Tuple[tf.Tensor] | None = None generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_enc_attentions: Tuple[tf.Tensor] | None = None generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_dec_hidden_states: Tuple[tf.Tensor] | None = None generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_dec_attentions: Tuple[tf.Tensor] | None = None generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -206,13 +206,13 @@ class TFRetrievAugLMOutput(ModelOutput): ...@@ -206,13 +206,13 @@ class TFRetrievAugLMOutput(ModelOutput):
context_input_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None
context_attention_mask: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None
question_encoder_last_hidden_state: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None
question_enc_hidden_states: Tuple[tf.Tensor] | None = None question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
question_enc_attentions: Tuple[tf.Tensor] | None = None question_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_last_hidden_state: tf.Tensor | None = None
generator_enc_hidden_states: Tuple[tf.Tensor] | None = None generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_enc_attentions: Tuple[tf.Tensor] | None = None generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_dec_hidden_states: Tuple[tf.Tensor] | None = None generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_dec_attentions: Tuple[tf.Tensor] | None = None generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None
class TFRagPreTrainedModel(TFPreTrainedModel): class TFRagPreTrainedModel(TFPreTrainedModel):
......
...@@ -493,8 +493,8 @@ class RwkvOutput(ModelOutput): ...@@ -493,8 +493,8 @@ class RwkvOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
state: Optional[List[torch.FloatTensor]] = None state: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -526,8 +526,8 @@ class RwkvCausalLMOutput(ModelOutput): ...@@ -526,8 +526,8 @@ class RwkvCausalLMOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
state: Optional[List[torch.FloatTensor]] = None state: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
RWKV_START_DOCSTRING = r""" RWKV_START_DOCSTRING = r"""
......
...@@ -71,8 +71,8 @@ class SamVisionEncoderOutput(ModelOutput): ...@@ -71,8 +71,8 @@ class SamVisionEncoderOutput(ModelOutput):
image_embeds: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -106,9 +106,9 @@ class SamImageSegmentationOutput(ModelOutput): ...@@ -106,9 +106,9 @@ class SamImageSegmentationOutput(ModelOutput):
iou_scores: torch.FloatTensor = None iou_scores: torch.FloatTensor = None
pred_masks: torch.FloatTensor = None pred_masks: torch.FloatTensor = None
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
mask_decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class SamPatchEmbeddings(nn.Module): class SamPatchEmbeddings(nn.Module):
......
...@@ -74,8 +74,8 @@ class TFSamVisionEncoderOutput(ModelOutput): ...@@ -74,8 +74,8 @@ class TFSamVisionEncoderOutput(ModelOutput):
image_embeds: tf.Tensor | None = None image_embeds: tf.Tensor | None = None
last_hidden_state: tf.Tensor = None last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -109,9 +109,9 @@ class TFSamImageSegmentationOutput(ModelOutput): ...@@ -109,9 +109,9 @@ class TFSamImageSegmentationOutput(ModelOutput):
iou_scores: tf.Tensor = None iou_scores: tf.Tensor = None
pred_masks: tf.Tensor = None pred_masks: tf.Tensor = None
vision_hidden_states: Tuple[tf.Tensor] | None = None vision_hidden_states: Tuple[tf.Tensor, ...] | None = None
vision_attentions: Tuple[tf.Tensor] | None = None vision_attentions: Tuple[tf.Tensor, ...] | None = None
mask_decoder_attentions: Tuple[tf.Tensor] | None = None mask_decoder_attentions: Tuple[tf.Tensor, ...] | None = None
class TFSamPatchEmbeddings(tf.keras.layers.Layer): class TFSamPatchEmbeddings(tf.keras.layers.Layer):
......
...@@ -171,8 +171,8 @@ class SiglipVisionModelOutput(ModelOutput): ...@@ -171,8 +171,8 @@ class SiglipVisionModelOutput(ModelOutput):
image_embeds: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -201,8 +201,8 @@ class SiglipTextModelOutput(ModelOutput): ...@@ -201,8 +201,8 @@ class SiglipTextModelOutput(ModelOutput):
text_embeds: Optional[torch.FloatTensor] = None text_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
......
...@@ -92,9 +92,9 @@ class SwinEncoderOutput(ModelOutput): ...@@ -92,9 +92,9 @@ class SwinEncoderOutput(ModelOutput):
""" """
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -128,9 +128,9 @@ class SwinModelOutput(ModelOutput): ...@@ -128,9 +128,9 @@ class SwinModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -164,9 +164,9 @@ class SwinMaskedImageModelingOutput(ModelOutput): ...@@ -164,9 +164,9 @@ class SwinMaskedImageModelingOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@property @property
def logits(self): def logits(self):
...@@ -209,9 +209,9 @@ class SwinImageClassifierOutput(ModelOutput): ...@@ -209,9 +209,9 @@ class SwinImageClassifierOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
def window_partition(input_feature, window_size): def window_partition(input_feature, window_size):
......
...@@ -97,9 +97,9 @@ class TFSwinEncoderOutput(ModelOutput): ...@@ -97,9 +97,9 @@ class TFSwinEncoderOutput(ModelOutput):
""" """
last_hidden_state: tf.Tensor = None last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -133,9 +133,9 @@ class TFSwinModelOutput(ModelOutput): ...@@ -133,9 +133,9 @@ class TFSwinModelOutput(ModelOutput):
last_hidden_state: tf.Tensor = None last_hidden_state: tf.Tensor = None
pooler_output: tf.Tensor | None = None pooler_output: tf.Tensor | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -169,9 +169,9 @@ class TFSwinMaskedImageModelingOutput(ModelOutput): ...@@ -169,9 +169,9 @@ class TFSwinMaskedImageModelingOutput(ModelOutput):
loss: tf.Tensor | None = None loss: tf.Tensor | None = None
reconstruction: tf.Tensor = None reconstruction: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@property @property
def logits(self): def logits(self):
...@@ -214,9 +214,9 @@ class TFSwinImageClassifierOutput(ModelOutput): ...@@ -214,9 +214,9 @@ class TFSwinImageClassifierOutput(ModelOutput):
loss: tf.Tensor | None = None loss: tf.Tensor | None = None
logits: tf.Tensor = None logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor] | None = None reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
def window_partition(input_feature: tf.Tensor, window_size: int) -> tf.Tensor: def window_partition(input_feature: tf.Tensor, window_size: int) -> tf.Tensor:
......
...@@ -94,9 +94,9 @@ class Swinv2EncoderOutput(ModelOutput): ...@@ -94,9 +94,9 @@ class Swinv2EncoderOutput(ModelOutput):
""" """
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -131,9 +131,9 @@ class Swinv2ModelOutput(ModelOutput): ...@@ -131,9 +131,9 @@ class Swinv2ModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -168,9 +168,9 @@ class Swinv2MaskedImageModelingOutput(ModelOutput): ...@@ -168,9 +168,9 @@ class Swinv2MaskedImageModelingOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@property @property
def logits(self): def logits(self):
...@@ -214,9 +214,9 @@ class Swinv2ImageClassifierOutput(ModelOutput): ...@@ -214,9 +214,9 @@ class Swinv2ImageClassifierOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.swin.modeling_swin.window_partition # Copied from transformers.models.swin.modeling_swin.window_partition
......
...@@ -88,8 +88,8 @@ class TvltModelOutput(ModelOutput): ...@@ -88,8 +88,8 @@ class TvltModelOutput(ModelOutput):
audio_label_masks: torch.LongTensor = None audio_label_masks: torch.LongTensor = None
pixel_ids_restore: torch.LongTensor = None pixel_ids_restore: torch.LongTensor = None
audio_ids_restore: torch.LongTensor = None audio_ids_restore: torch.LongTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -111,8 +111,8 @@ class TvltDecoderOutput(ModelOutput): ...@@ -111,8 +111,8 @@ class TvltDecoderOutput(ModelOutput):
""" """
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -145,8 +145,8 @@ class TvltForPreTrainingOutput(ModelOutput): ...@@ -145,8 +145,8 @@ class TvltForPreTrainingOutput(ModelOutput):
matching_logits: torch.FloatTensor = None matching_logits: torch.FloatTensor = None
pixel_logits: torch.FloatTensor = None pixel_logits: torch.FloatTensor = None
audio_logits: torch.FloatTensor = None audio_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
def generate_pixel_mask_noise(pixel_values, pixel_mask=None, mask_ratio=0.75): def generate_pixel_mask_noise(pixel_values, pixel_mask=None, mask_ratio=0.75):
......
...@@ -61,8 +61,8 @@ class TvpVideoGroundingOutput(ModelOutput): ...@@ -61,8 +61,8 @@ class TvpVideoGroundingOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class TvpLoss(nn.Module): class TvpLoss(nn.Module):
......
...@@ -614,8 +614,8 @@ class TFXLMWithLMHeadModelOutput(ModelOutput): ...@@ -614,8 +614,8 @@ class TFXLMWithLMHeadModelOutput(ModelOutput):
""" """
logits: tf.Tensor = None logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
XLM_START_DOCSTRING = r""" XLM_START_DOCSTRING = r"""
......
...@@ -297,8 +297,8 @@ class XLMForQuestionAnsweringOutput(ModelOutput): ...@@ -297,8 +297,8 @@ class XLMForQuestionAnsweringOutput(ModelOutput):
end_top_log_probs: Optional[torch.FloatTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None cls_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
XLM_START_DOCSTRING = r""" XLM_START_DOCSTRING = r"""
......
...@@ -871,8 +871,8 @@ class TFXLNetModelOutput(ModelOutput): ...@@ -871,8 +871,8 @@ class TFXLNetModelOutput(ModelOutput):
last_hidden_state: tf.Tensor = None last_hidden_state: tf.Tensor = None
mems: List[tf.Tensor] | None = None mems: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -908,8 +908,8 @@ class TFXLNetLMHeadModelOutput(ModelOutput): ...@@ -908,8 +908,8 @@ class TFXLNetLMHeadModelOutput(ModelOutput):
loss: tf.Tensor | None = None loss: tf.Tensor | None = None
logits: tf.Tensor = None logits: tf.Tensor = None
mems: List[tf.Tensor] | None = None mems: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -942,8 +942,8 @@ class TFXLNetForSequenceClassificationOutput(ModelOutput): ...@@ -942,8 +942,8 @@ class TFXLNetForSequenceClassificationOutput(ModelOutput):
loss: tf.Tensor | None = None loss: tf.Tensor | None = None
logits: tf.Tensor = None logits: tf.Tensor = None
mems: List[tf.Tensor] | None = None mems: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -976,8 +976,8 @@ class TFXLNetForTokenClassificationOutput(ModelOutput): ...@@ -976,8 +976,8 @@ class TFXLNetForTokenClassificationOutput(ModelOutput):
loss: tf.Tensor | None = None loss: tf.Tensor | None = None
logits: tf.Tensor = None logits: tf.Tensor = None
mems: List[tf.Tensor] | None = None mems: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -1012,8 +1012,8 @@ class TFXLNetForMultipleChoiceOutput(ModelOutput): ...@@ -1012,8 +1012,8 @@ class TFXLNetForMultipleChoiceOutput(ModelOutput):
loss: tf.Tensor | None = None loss: tf.Tensor | None = None
logits: tf.Tensor = None logits: tf.Tensor = None
mems: List[tf.Tensor] | None = None mems: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass @dataclass
...@@ -1049,8 +1049,8 @@ class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput): ...@@ -1049,8 +1049,8 @@ class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput):
start_logits: tf.Tensor = None start_logits: tf.Tensor = None
end_logits: tf.Tensor = None end_logits: tf.Tensor = None
mems: List[tf.Tensor] | None = None mems: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor, ...] | None = None
XLNET_START_DOCSTRING = r""" XLNET_START_DOCSTRING = r"""
......
...@@ -605,8 +605,8 @@ class XLNetModelOutput(ModelOutput): ...@@ -605,8 +605,8 @@ class XLNetModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor last_hidden_state: torch.FloatTensor
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -642,8 +642,8 @@ class XLNetLMHeadModelOutput(ModelOutput): ...@@ -642,8 +642,8 @@ class XLNetLMHeadModelOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -676,8 +676,8 @@ class XLNetForSequenceClassificationOutput(ModelOutput): ...@@ -676,8 +676,8 @@ class XLNetForSequenceClassificationOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -710,8 +710,8 @@ class XLNetForTokenClassificationOutput(ModelOutput): ...@@ -710,8 +710,8 @@ class XLNetForTokenClassificationOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -746,8 +746,8 @@ class XLNetForMultipleChoiceOutput(ModelOutput): ...@@ -746,8 +746,8 @@ class XLNetForMultipleChoiceOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -783,8 +783,8 @@ class XLNetForQuestionAnsweringSimpleOutput(ModelOutput): ...@@ -783,8 +783,8 @@ class XLNetForQuestionAnsweringSimpleOutput(ModelOutput):
start_logits: torch.FloatTensor = None start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass @dataclass
...@@ -831,8 +831,8 @@ class XLNetForQuestionAnsweringOutput(ModelOutput): ...@@ -831,8 +831,8 @@ class XLNetForQuestionAnsweringOutput(ModelOutput):
end_top_index: Optional[torch.LongTensor] = None end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None cls_logits: Optional[torch.FloatTensor] = None
mems: Optional[List[torch.FloatTensor]] = None mems: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
XLNET_START_DOCSTRING = r""" XLNET_START_DOCSTRING = r"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment