Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5bb211be
Unverified
Commit
5bb211be
authored
Jul 26, 2022
by
Tom Mathews
Committed by
GitHub
Jul 26, 2022
Browse files
Adding type hints of TF:CTRL (#18264)
parent
c8ed1b8b
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
56 additions
and
55 deletions
+56
-55
src/transformers/models/ctrl/modeling_tf_ctrl.py
src/transformers/models/ctrl/modeling_tf_ctrl.py
+56
-55
No files found.
src/transformers/models/ctrl/modeling_tf_ctrl.py
View file @
5bb211be
...
...
@@ -16,7 +16,7 @@
""" TF 2.0 CTRL model."""
import
warnings
from
typing
import
Tuple
from
typing
import
Optional
,
Tuple
,
Union
import
numpy
as
np
import
tensorflow
as
tf
...
...
@@ -24,6 +24,7 @@ import tensorflow as tf
from
...modeling_tf_outputs
import
TFBaseModelOutputWithPast
,
TFCausalLMOutputWithPast
,
TFSequenceClassifierOutput
from
...modeling_tf_utils
import
(
TFCausalLanguageModelingLoss
,
TFModelInputType
,
TFPreTrainedModel
,
TFSequenceClassificationLoss
,
TFSharedEmbeddings
,
...
...
@@ -256,19 +257,19 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
@
unpack_inputs
def
call
(
self
,
input_ids
=
None
,
past_key_values
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
use_cache
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
training
=
False
,
):
input_ids
:
Optional
[
TFModelInputType
]
=
None
,
past_key_values
:
Optional
[
Tuple
[
Tuple
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]]]
=
None
,
attention_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
token_type_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
position_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
head_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
inputs_embeds
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
training
:
Optional
[
bool
]
=
False
,
)
->
Union
[
Tuple
,
TFBaseModelOutputWithPast
]
:
# If using past key value states, only the last tokens
# should be given as an input
...
...
@@ -528,19 +529,19 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
)
def
call
(
self
,
input_ids
=
None
,
past_key_values
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
use_cache
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
training
=
False
,
):
input_ids
:
Optional
[
TFModelInputType
]
=
None
,
past_key_values
:
Optional
[
Tuple
[
Tuple
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]]]
=
None
,
attention_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
token_type_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
position_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
head_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
inputs_embeds
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
training
:
Optional
[
bool
]
=
False
,
)
->
Union
[
Tuple
,
TFBaseModelOutputWithPast
]
:
outputs
=
self
.
transformer
(
input_ids
=
input_ids
,
past_key_values
=
past_key_values
,
...
...
@@ -642,20 +643,20 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel, TFCausalLanguageModelingLoss):
)
def
call
(
self
,
input_ids
=
None
,
past_key_values
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
use_cache
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
labels
=
None
,
training
=
False
,
):
input_ids
:
Optional
[
TFModelInputType
]
=
None
,
past_key_values
:
Optional
[
Tuple
[
Tuple
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]]]
=
None
,
attention_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
token_type_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
position_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
head_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
inputs_embeds
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
labels
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
training
:
Optional
[
bool
]
=
False
,
)
->
Union
[
Tuple
,
TFCausalLMOutputWithPast
]
:
r
"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
...
...
@@ -753,20 +754,20 @@ class TFCTRLForSequenceClassification(TFCTRLPreTrainedModel, TFSequenceClassific
)
def
call
(
self
,
input_ids
=
None
,
past_key_values
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
use_cache
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
labels
=
None
,
training
=
False
,
):
input_ids
:
Optional
[
TFModelInputType
]
=
None
,
past_key_values
:
Optional
[
Tuple
[
Tuple
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]]]
=
None
,
attention_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
token_type_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
position_ids
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
head_mask
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
inputs_embeds
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
use_cache
:
Optional
[
bool
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
labels
:
Optional
[
Union
[
np
.
ndarray
,
tf
.
Tensor
]]
=
None
,
training
:
Optional
[
bool
]
=
False
,
)
->
Union
[
Tuple
,
TFSequenceClassifierOutput
]
:
r
"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment