Unverified Commit 5a995735 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Add Wav2Vec2Conformer (#16812)



* save intermediate

* add wav2vec2 conformer

* add more code

* more

* first test passes

* make all checkpoints work

* update

* up

* more clean ups

* save clean-up

* save clean-up

* save more

* remove bogus

* finalize design conformer

* remove vision

* finish all tests

* more changes

* finish code

* add doc tests

* add slow tests

* fix autoconfig test

* up

* correct docstring

* up

* update

* fix

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>

* Update docs/source/en/model_doc/wav2vec2-conformer.mdx

* upload

* save copied from

* correct configs

* fix model outputs

* add to docs

* fix imports

* finish

* finish code

* correct copied from

* correct again

* correct make fix

* improve make fix copies

* save

* correct fix copy from

* correct init structure

* correct

* fix import

* apply suggestions
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
parent f0395cf5
......@@ -366,6 +366,8 @@
title: VisualBERT
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-conformer
title: Wav2Vec2-Conformer
- local: model_doc/wav2vec2_phoneme
title: Wav2Vec2Phoneme
- local: model_doc/wavlm
......
......@@ -271,6 +271,7 @@ Flax), PyTorch, and/or TensorFlow.
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ❌ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
......
......@@ -136,6 +136,30 @@ documented on their corresponding model page.
[[autodoc]] modeling_outputs.Seq2SeqQuestionAnsweringModelOutput
## SemanticSegmenterOutput
[[autodoc]] modeling_outputs.SemanticSegmenterOutput
## ImageClassifierOutput
[[autodoc]] modeling_outputs.ImageClassifierOutput
## ImageClassifierOutputWithNoAttention
[[autodoc]] modeling_outputs.ImageClassifierOutputWithNoAttention
## DepthEstimatorOutput
[[autodoc]] modeling_outputs.DepthEstimatorOutput
## Wav2Vec2BaseModelOutput
[[autodoc]] modeling_outputs.Wav2Vec2BaseModelOutput
## XVectorOutput
[[autodoc]] modeling_outputs.XVectorOutput
## TFBaseModelOutput
[[autodoc]] modeling_tf_outputs.TFBaseModelOutput
......
......@@ -51,8 +51,6 @@ found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT).
## UniSpeechSat specific outputs
[[autodoc]] models.unispeech_sat.modeling_unispeech_sat.UniSpeechSatBaseModelOutput
[[autodoc]] models.unispeech_sat.modeling_unispeech_sat.UniSpeechSatForPreTrainingOutput
## UniSpeechSatModel
......
......@@ -46,8 +46,6 @@ found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech).
## UniSpeech specific outputs
[[autodoc]] models.unispeech.modeling_unispeech.UniSpeechBaseModelOutput
[[autodoc]] models.unispeech.modeling_unispeech.UniSpeechForPreTrainingOutput
## UniSpeechModel
......
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Wav2Vec2-Conformer
## Overview
The Wav2Vec2-Conformer weights were released by the Meta AI team within the [Fairseq library](https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md#pre-trained-models).
Tips:
- Wav2Vec2-Conformer follows the same architecture as Wav2Vec2, but replaces the *Attention*-block with a *Conformer*-block
as introduced in [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100).
- Wav2Vec2-Conformer uses the same tokenizer and feature extractor as Wav2Vec2.
- Wav2Vec2-Conformer can use either no relative position embeddings, Transformer-XL-like position embeddings, or
rotary position embeddings by setting the correct `config.position_embeddings_type`.
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
The original code can be found [here](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec).
## Wav2Vec2ConformerConfig
[[autodoc]] Wav2Vec2ConformerConfig
## Wav2Vec2Conformer specific outputs
[[autodoc]] models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput
## Wav2Vec2ConformerModel
[[autodoc]] Wav2Vec2ConformerModel
- forward
## Wav2Vec2ConformerForCTC
[[autodoc]] Wav2Vec2ConformerForCTC
- forward
## Wav2Vec2ConformerForSequenceClassification
[[autodoc]] Wav2Vec2ConformerForSequenceClassification
- forward
## Wav2Vec2ConformerForAudioFrameClassification
[[autodoc]] Wav2Vec2ConformerForAudioFrameClassification
- forward
## Wav2Vec2ConformerForXVector
[[autodoc]] Wav2Vec2ConformerForXVector
- forward
## Wav2Vec2ConformerForPreTraining
[[autodoc]] Wav2Vec2ConformerForPreTraining
- forward
......@@ -49,10 +49,6 @@ found [here](https://github.com/microsoft/unilm/tree/master/wavlm).
[[autodoc]] WavLMConfig
## WavLM specific outputs
[[autodoc]] models.wavlm.modeling_wavlm.WavLMBaseModelOutput
## WavLMModel
[[autodoc]] WavLMModel
......
......@@ -318,6 +318,10 @@ _import_structure = {
"Wav2Vec2Processor",
"Wav2Vec2Tokenizer",
],
"models.wav2vec2_conformer": [
"WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Wav2Vec2ConformerConfig",
],
"models.wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"],
"models.wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"],
"models.wavlm": [
......@@ -1668,6 +1672,18 @@ else:
"Wav2Vec2PreTrainedModel",
]
)
_import_structure["models.wav2vec2_conformer"].extend(
[
"WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ConformerForAudioFrameClassification",
"Wav2Vec2ConformerForCTC",
"Wav2Vec2ConformerForPreTraining",
"Wav2Vec2ConformerForSequenceClassification",
"Wav2Vec2ConformerForXVector",
"Wav2Vec2ConformerModel",
"Wav2Vec2ConformerPreTrainedModel",
]
)
_import_structure["models.wavlm"].extend(
[
"WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -2795,6 +2811,7 @@ if TYPE_CHECKING:
Wav2Vec2Processor,
Wav2Vec2Tokenizer,
)
from .models.wav2vec2_conformer import WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2ConformerConfig
from .models.wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer
from .models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM
from .models.wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
......@@ -3926,6 +3943,16 @@ if TYPE_CHECKING:
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
from .models.wav2vec2_conformer import (
WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
Wav2Vec2ConformerForAudioFrameClassification,
Wav2Vec2ConformerForCTC,
Wav2Vec2ConformerForPreTraining,
Wav2Vec2ConformerForSequenceClassification,
Wav2Vec2ConformerForXVector,
Wav2Vec2ConformerModel,
Wav2Vec2ConformerPreTrainedModel,
)
from .models.wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
......
......@@ -970,3 +970,64 @@ class DepthEstimatorOutput(ModelOutput):
predicted_depth: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class Wav2Vec2BaseModelOutput(ModelOutput):
"""
Base class for models that have been trained with the Wav2Vec2 loss objective.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
extract_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, conv_dim[-1])`):
Sequence of extracted feature vectors of the last convolutional layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
extract_features: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class XVectorOutput(ModelOutput):
"""
Output type of [`Wav2Vec2ForXVector`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.xvector_output_dim)`):
Classification hidden states before AMSoftmax.
embeddings (`torch.FloatTensor` of shape `(batch_size, config.xvector_output_dim)`):
Utterance embeddings used for vector similarity-based retrieval.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
embeddings: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
......@@ -128,6 +128,7 @@ from . import (
vit,
vit_mae,
wav2vec2,
wav2vec2_conformer,
wav2vec2_phoneme,
wav2vec2_with_lm,
wavlm,
......
......@@ -125,6 +125,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("vit", "ViTConfig"),
("vit_mae", "ViTMAEConfig"),
("wav2vec2", "Wav2Vec2Config"),
("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
("wavlm", "WavLMConfig"),
("xglm", "XGLMConfig"),
("xlm", "XLMConfig"),
......@@ -223,6 +224,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xglm", "XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
......@@ -349,6 +351,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("vit", "ViT"),
("vit_mae", "ViTMAE"),
("wav2vec2", "Wav2Vec2"),
("wav2vec2-conformer", "Wav2Vec2-Conformer"),
("wav2vec2_phoneme", "Wav2Vec2Phoneme"),
("wavlm", "WavLM"),
("xglm", "XGLM"),
......
......@@ -62,6 +62,7 @@ FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict(
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
......
......@@ -118,6 +118,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("vit", "ViTModel"),
("vit_mae", "ViTMAEModel"),
("wav2vec2", "Wav2Vec2Model"),
("wav2vec2-conformer", "Wav2Vec2ConformerModel"),
("wavlm", "WavLMModel"),
("xglm", "XGLMModel"),
("xlm", "XLMModel"),
......@@ -169,6 +170,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("visual_bert", "VisualBertForPreTraining"),
("vit_mae", "ViTMAEForPreTraining"),
("wav2vec2", "Wav2Vec2ForPreTraining"),
("wav2vec2-conformer", "Wav2Vec2ConformerForPreTraining"),
("xlm", "XLMWithLMHeadModel"),
("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
......@@ -623,6 +625,7 @@ MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("unispeech", "UniSpeechForSequenceClassification"),
("unispeech-sat", "UniSpeechSatForSequenceClassification"),
("wav2vec2", "Wav2Vec2ForSequenceClassification"),
("wav2vec2-conformer", "Wav2Vec2ConformerForSequenceClassification"),
("wavlm", "WavLMForSequenceClassification"),
]
)
......@@ -637,6 +640,7 @@ MODEL_FOR_CTC_MAPPING_NAMES = OrderedDict(
("unispeech", "UniSpeechForCTC"),
("unispeech-sat", "UniSpeechSatForCTC"),
("wav2vec2", "Wav2Vec2ForCTC"),
("wav2vec2-conformer", "Wav2Vec2ConformerForCTC"),
("wavlm", "WavLMForCTC"),
]
)
......@@ -647,6 +651,7 @@ MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("data2vec-audio", "Data2VecAudioForAudioFrameClassification"),
("unispeech-sat", "UniSpeechSatForAudioFrameClassification"),
("wav2vec2", "Wav2Vec2ForAudioFrameClassification"),
("wav2vec2-conformer", "Wav2Vec2ConformerForAudioFrameClassification"),
("wavlm", "WavLMForAudioFrameClassification"),
]
)
......@@ -657,6 +662,7 @@ MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES = OrderedDict(
("data2vec-audio", "Data2VecAudioForXVector"),
("unispeech-sat", "UniSpeechSatForXVector"),
("wav2vec2", "Wav2Vec2ForXVector"),
("wav2vec2-conformer", "Wav2Vec2ConformerForXVector"),
("wavlm", "WavLMForXVector"),
]
)
......
......@@ -51,6 +51,7 @@ PROCESSOR_MAPPING_NAMES = OrderedDict(
("vilt", "ViltProcessor"),
("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"),
("wav2vec2", "Wav2Vec2Processor"),
("wav2vec2-conformer", "Wav2Vec2Processor"),
("wav2vec2_with_lm", "Wav2Vec2ProcessorWithLM"),
("wavlm", "Wav2Vec2Processor"),
]
......
......@@ -228,6 +228,7 @@ else:
("transfo-xl", ("TransfoXLTokenizer", None)),
("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
(
"xglm",
......
......@@ -71,13 +71,13 @@ class Data2VecAudioConfig(PretrainedConfig):
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
......@@ -124,13 +124,13 @@ class Data2VecAudioConfig(PretrainedConfig):
instance of [`Data2VecAudioForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
......
......@@ -16,7 +16,6 @@
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
......@@ -27,16 +26,17 @@ from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput
from ...modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
Wav2Vec2BaseModelOutput,
XVectorOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import torch_int_div
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_data2vec_audio import Data2VecAudioConfig
......@@ -81,69 +81,6 @@ DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = [
]
@dataclass
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2BaseModelOutput with Wav2Vec2->Data2VecAudio
class Data2VecAudioBaseModelOutput(ModelOutput):
"""
Output type of [`Data2VecAudioBaseModelOutput`], with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
extract_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, conv_dim[-1])`):
Sequence of extracted feature vectors of the last convolutional layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
extract_features: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.XVectorOutput with Wav2Vec2->Data2VecAudio
class XVectorOutput(ModelOutput):
"""
Output type of [`Data2VecAudioForXVector`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.xvector_output_dim)`):
Classification hidden states before AMSoftmax.
embeddings (`torch.FloatTensor` of shape `(batch_size, config.xvector_output_dim)`):
Utterance embeddings used for vector similarity-based retrieval.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
embeddings: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
......@@ -973,7 +910,7 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
@add_code_sample_docstrings(
processor_class=_PROCESSOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Data2VecAudioBaseModelOutput,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
......@@ -986,7 +923,7 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Data2VecAudioBaseModelOutput]:
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
......@@ -1023,7 +960,7 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Data2VecAudioBaseModelOutput(
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
......
......@@ -76,13 +76,13 @@ class SEWConfig(PretrainedConfig):
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`):
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`):
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the the length of *conv_dim*.
conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`):
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the the length of
*conv_dim*.
......
......@@ -94,13 +94,13 @@ class SEWDConfig(PretrainedConfig):
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`):
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`):
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the the length of *conv_dim*.
conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`):
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the the length of
*conv_dim*.
......
......@@ -80,13 +80,13 @@ class UniSpeechConfig(PretrainedConfig):
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for quantized feature encoder states.
conv_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the the length of *conv_dim*.
conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the the length of
*conv_dim*.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment