Unverified Commit 59499bbe authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Update forward signature test for vision models (#27681)

* Update forward signature

* Empty-Commit
parent 1d7f406e
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch BEiT model. """
import inspect
import unittest
from datasets import load_dataset
......@@ -236,18 +235,6 @@ class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Bit model. """
import inspect
import unittest
from transformers import BitConfig
......@@ -202,18 +201,6 @@ class BitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch ConvNext model. """
import inspect
import unittest
from transformers import ConvNextConfig
......@@ -212,18 +211,6 @@ class ConvNextModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase
def test_feed_forward_chunking(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch ConvNextV2 model. """
import inspect
import unittest
from transformers import ConvNextV2Config
......@@ -265,18 +264,6 @@ class ConvNextV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
loss = model(**inputs).loss
loss.backward()
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch CvT model. """
import inspect
import unittest
from math import floor
......@@ -191,18 +190,6 @@ class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Data2VecVision model. """
import inspect
import unittest
from transformers import Data2VecVisionConfig
......@@ -220,18 +219,6 @@ class Data2VecVisionModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Te
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch DeiT model. """
import inspect
import unittest
import warnings
......@@ -238,18 +237,6 @@ class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Dinat model. """
import collections
import inspect
import unittest
from transformers import DinatConfig
......@@ -264,18 +263,6 @@ class DinatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
self.skipTest("Dinat's attention operation is handled entirely by NATTEN.")
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Dinov2 model. """
import inspect
import unittest
from transformers import Dinov2Config
......@@ -265,18 +264,6 @@ class Dinov2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Donut Swin model. """
import collections
import inspect
import unittest
from transformers import DonutSwinConfig
......@@ -186,18 +185,6 @@ class DonutSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch DPT model. """
import inspect
import unittest
from transformers import DPTConfig
......@@ -195,18 +194,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch DPT model. """
import inspect
import unittest
from transformers import Dinov2Config, DPTConfig
......@@ -154,18 +153,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_inputs_embeds(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch DPT model. """
import inspect
import unittest
from transformers import DPTConfig
......@@ -209,18 +208,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch EfficientFormer model. """
import inspect
import unittest
import warnings
from typing import List
......@@ -223,18 +222,6 @@ class EfficientFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.T
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch EfficientNet model. """
import inspect
import unittest
from transformers import EfficientNetConfig
......@@ -172,18 +171,6 @@ class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Test
def test_feed_forward_chunking(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch FocalNet model. """
import collections
import inspect
import unittest
from transformers import FocalNetConfig
......@@ -299,18 +298,6 @@ class FocalNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
model = model_class(config)
model.to(torch_device)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch GLPN model. """
import inspect
import unittest
from transformers import is_torch_available, is_vision_available
......@@ -177,18 +176,6 @@ class GLPNModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch LeViT model. """
import inspect
import unittest
import warnings
from math import ceil, floor
......@@ -218,18 +217,6 @@ class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
......
......@@ -14,7 +14,6 @@
# limitations under the License.
""" Testing suite for the PyTorch Mask2Former model. """
import inspect
import unittest
import numpy as np
......@@ -242,18 +241,6 @@ class Mask2FormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
def test_multi_gpu_data_parallel_forward(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@slow
def test_model_from_pretrained(self):
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch MaskFormer model. """
import copy
import inspect
import unittest
import numpy as np
......@@ -266,18 +265,6 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
def test_multi_gpu_data_parallel_forward(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@slow
def test_model_from_pretrained(self):
for model_name in ["facebook/maskformer-swin-small-coco"]:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment